The structure and function of the photosystem II PsbO extrinsic protein is under intense research, being an essential part of the biomolecular engine that carries out water oxidation and oxygen production. This paper presents a structural analysis of the isolated PsbO protein by FTIR spectroscopy, reporting detailed secondary structure quantification and changes in the secondary structure content of the protein attributed to the effect of calcium (Ca(2+)). Measurements in H(2)O and D(2)O have allowed us to see the effect of calcium on the conformation of the protein. The results indicate that (i) the protein presents a major content of beta-structure (i.e., beta-sheet, beta-strands, beta-turns) as detected by the infrared bands at 1624-1625, 1678-1679, 1688-1689 cm(-1), which account for about 38% in water and 33% in heavy water, in the presence of calcium; and (ii) the amount of this beta-structure fraction increases 7-10% in the absence of calcium, with a concomitant decrease in loops and nonordered structure. The thermal denaturation profile of the protein in the presence of calcium showed low stability with T(m) approximately 56 degrees C. This profile also shows a second phase of denaturation above 60 degrees C and the appearance of aggregation signals above 70 degrees C. Our observations indicate that calcium is able to modify the conformation of the protein at least in solution and confirm that PsbO is mainly a beta-protein where beta-sheet is the major ordered secondary structure element of the protein core.
The water-splitting and oxygen-evolving (OE) reaction is carried out by a large multisubunit protein complex, Photosystem II (PSII), that has two distinct regions: a membrane intrinsic-region that includes most of the PSII subunits and a lumenal extrinsic-region that is in close association to the manganese catalytic center. The recently determined PSII 3D structures from cyanobacteria provide a considerable amount of new knowledge about the OE architecture (K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science 303 (2004) 1831-1838; B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044). Most of the intrinsic core PSII polypeptides have been well conserved through evolution from ancient cyanobacteria to modern plants, keeping the essence of PSII light driven reactions from prokaryotes to eukaryotes; but what is striking is the large number of changes that have occurred in the oxygen-evolving extrinsic proteins (OEEp) associated to PSII lumenal side. For unknown reasons plant PSII has required the "invention" of three OEEps: PsbP (23 kDa), PsbQ (16 kDa) and PsbR (10 kDa); associated to the ubiquitous OEEp PsbO (33 kDa). This set of proteins seems to be required in plants for the full activity and stability of the OE center in vivo, but their specific function is not clear. In this paper, bioinformatics and functional data show that the OEEps present in plants and green algae are very distinct from their prokaryotic counterparts. Moreover, clear differences are found for PsbQ from higher plants and green algae; and a relationship has been found between PsbR and the Mn cluster.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.
The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.