Summary
In biology as in real estate, location is a cardinal organizational principle that dictates the accessibility and flow of informational traffic. An essential question in nuclear organization is the nature of the address code—how objects are placed and later searched for and retrieved. Long noncoding RNAs (IncRNAs) have emerged as key components of the address code, allowing protein complexes, genes, and chromosomes to be trafficked to appropriate locations and subject to proper activation and deactivation. LncRNA-based mechanisms control cell fates during development, and their dysregulation underlies some human disorders caused by chromosomal deletions and translocations.
SUMMARY
N6-methyl-adenosine (m6A) is the most abundant modification on messenger RNAs and is linked to human diseases, but its functions in mammalian development are poorly understood. Here we reveal the evolutionary conservation and function of m6A by mapping the m6A methylome in mouse and human embryonic stem cells. Thousands of messenger and long noncoding RNAs show conserved m6A modification, including transcripts encoding core pluripotency transcription factors. m6A is enriched over 3′ untranslated regions at defined sequence motifs, and marks unstable transcripts, including transcripts turned over upon differentiation. Genetic inactivation or depletion of mouse and human Mettl3, one of the m6A methylases, led to m6A erasure on select target genes, prolonged Nanog expression upon differentiation, and impaired ESC’s exit from self-renewal towards differentiation into several lineages in vitro and in vivo. Thus, m6A is a mark of transcriptome flexibility required for stem cells to differentiate to specific lineages.
Summary
Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that in the germ-line, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germ-line nuage structures called P-granules. WAGO-1 silences certain genes, transposons, pseudogenes and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest novel regulatory functions for small RNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.