In this paper, we propose an exact algorithm to solve the Orthogonal Art Gallery problem in which guards can only be placed on the vertices of the polygon P representing the gallery. Our approach is based on a discretization of P into a finite set of points in its interior. The algorithm repeatedly solves an instance of the Set Cover problem obtaining a minimum set Z of vertices of P that can view all points in the current discretization. Whenever P is completely visible from Z, the algorithm halts; otherwise, the discretization is refined and another iteration takes place. We establish that the algorithm always converges to an optimal solution by presenting a worst case analysis of the number of iterations that could be effected. Even though these could theoretically reach O(n 4 ), our computational experiments reveal that, in practice, they are linear in n and, for n ≤ 200, they actually remain less than three in almost all instances.Furthermore, the low number of points in the initial discretization, O(n 2 ), compared to the possible O(n 4 ) atomic visibility polygons, renders much shorter total execution times. Optimal solutions found for different classes of instances of polygons with up to 200 vertices are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.