This paper proposes a well-suited strategy for High Performance Computing (HPC) of density-based topology optimization using Graphics Processing Units (GPUs). Such a strategy takes advantage of Massively Parallel Processing (MPP) architectures to overcome the computationally demanding procedures of density-based topology design, both in terms of memory consumption and processing time. This is done exploiting data locality and minimizing both memory consumption and data transfers. The proposed GPU instance makes use of different granularities for the topology optimization pipeline, which are selected to properly balance the workload between the threads exploiting the parallelization potential of massive parallel architectures. The performance of the fine-grained GPU instance of the solving stage is evaluated using two preconditioning techniques. The proposal is also compared with the classical CPU implementation for diverse topology optimization problems, including stiffness maximization, heat sink design and compliant mechanism design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.