Adipose tissue glyceroneogenesis generates glycerol 3-phosphate, which could be used for fatty acid esterification during starvation. To determine whether increased glyceroneogenesis leads to increased fat mass and to explore the role of obesity in the development of insulin resistance, we overexpressed PEPCK, a regulatory enzyme of glyceroneogenesis in adipose tissue. Transgenic mice showed a chronic increase in PEPCK activity, which led to increased glyceroneogenesis, reesterification of free fatty acids (FFAs), increased adipocyte size and fat mass, and higher body weight. In spite of increased fat mass, transgenic mice showed decreased circulating FFAs and normal leptin levels. Moreover, glucose tolerance and whole-body insulin sensitivity were preserved. Skeletal muscle basal and insulin-stimulated glucose uptake and glycogen content were not affected, suggesting that skeletal muscle insulin sensitivity is normal in transgenic obese mice. Our results indicate the key role of PEPCK in the control of FFA re-esterification in adipose tissue and, thus, the contribution of glyceroneogenesis to fat accumulation. Moreover, they suggest that higher fat mass without increased circulating FFAs does not lead to insulin resistance or type 2 diabetes in these mice. Diabetes 51: 624 -630, 2002
Exciting new opportunities in embryo cloning have been made possible by recent studies on the interaction of the donor nucleus with the recipient cytoplasm after embryo reconstruction. This article reviews information regarding the co-ordination of nuclear and cytoplasmic events during embryo reconstruction, in particular the direct and indirect effects of maturation/ meiosis/mitosis-promoting factor (MPF), upon the transferred nucleus. This will be discussed in relation to DNA replication, the maintenance of correct ploidy, the occurrence of chromosomal abnormalities and development of reconstructed embryos. Although this review is primarily concerned with the reconstruction of mammalian embryos, specific examples from amphibians will also be cited.
Type 1 diabetic patients develop severe secondary complications because insulin treatment does not guarantee normoglycemia. Thus, efficient regulation of glucose homeostasis is a major challenge in diabetes therapy. Skeletal muscle is the most important tissue for glucose disposal after a meal. However, the lack of insulin during diabetes impairs glucose uptake. To increase glucose removal from blood, skeletal muscle of transgenic mice was engineered both to produce basal levels of insulin and to express the liver enzyme glucokinase. After streptozotozin (STZ) administration of double-transgenic mice, a synergic action in skeletal muscle between the insulin produced and the increased glucose phosphorylation by glucokinase was established, preventing hyperglycemia and metabolic alterations. These findings suggested that insulin and glucokinase might be expressed in skeletal muscle, using adeno-associated viral 1 (AAV1) vectors as a new gene therapy approach for diabetes. AAV1-Ins؉GK-treated diabetic mice restored and maintained normoglycemia in fed and fasted conditions for >4 months after STZ administration. Furthermore, these mice showed normalization of metabolic parameters, glucose tolerance, and food and fluid intake. Therefore, the joint action of basal insulin production and glucokinase activity may generate a "glucose sensor" in skeletal muscle that allows proper regulation of glycemia in diabetic animals and thus prevents secondary complications. Diabetes 55: 1546 -1553, 2006
Chronic hyperglycemia is responsible for diabetes-specific microvascular and macrovascular complications. To reduce hyperglycemia, key tissues may be engineered to take up glucose. To determine whether an increase in skeletal muscle glucose phosphorylation leads to increased glucose uptake and to normalization of diabetic alterations, the liver enzyme glucokinase (GK) was expressed in muscle of transgenic mice. GK has a high Km for glucose and its activity is not inhibited by glucose 6-phosphate. The presence of GK activity in skeletal muscle resulted in increased concentrations of glucose 6-phosphate and glycogen. These mice showed lower glycemia and insulinemia, increased serum lactate levels, and higher blood glucose disposal after an intraperitoneal glucose tolerance test. Furthermore, transgenic mice were more sensitive to injection of low doses of insulin, which led to increased blood glucose disposal. In addition, streptozotocin (STZ)-treated transgenic mice showed lower levels of blood glucose than STZ-treated controls and maintained body weight. Moreover, injection of insulin to STZ-treated transgenic mice led to normoglycemia, while STZ-treated control mice remained highly hyperglycemic. Thus, these results are consistent with a key role of glucose phosphorylation in regulating glucose metabolism in skeletal muscle. Furthermore, this study suggests that engineering skeletal muscle to express GK may be a new approach to the therapy of diabetes mellitus.
Type 1 diabetes results from autoimmune destruction of pancreatic beta cells. This process might be reversed by genetically engineering the endocrine pancreas in vivo to express factors that induce beta cell replication and neogenesis and counteract the immune response. However, the pancreas is difficult to manipulate and pancreatitis is a serious concern, which has made effective gene transfer to this organ elusive. Thus, new approaches for gene delivery to the pancreas in vivo are required. Here we show that pancreatic beta cells were efficiently transduced to express beta-galactosidase after systemic injection of adenovirus into mice with clamped hepatic circulation. Seven days after vector administration about 70% of pancreatic islets showed beta-galactosidase expression, with an average of about 20% of the cells within positive islets being transduced. In addition, scattered acinar cells expressing beta-galactosidase were also observed. Thus, this approach may be used to transfer genes of interest to mouse islets and beta cells, both for the study of islet biology and gene therapy of diabetes and other pancreatic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.