The present study examined the effects of dry grinding, using ball-milling, on the structure of reference well-crystallized (KGa-1) and poorly crystallized (KGa-2) kaolinite powders from Georgia. Grinding produced a strong structural alteration, mainly along the c axis, resulting in disorder and total degradation of the crystal structure of the kaolinite and the formation of an amorphous product. The surface area increased with grinding time, mainly in KGa-2 (maximum value 50.27 m 2 /g), a result associated with particle-size reduction. These particles became more agglomerated with grinding, and the surface area decreased after 30 min, as confirmed by scanning electron microscopy and particle-size-distribution analysis. There was a limit to particle-size reduction with grinding time. When grinding time was increased, the original endothermic differential thermal analysis (DTA) effects of dehydroxylation in both samples shifted to lower temperatures, decreased in intensity, then disappeared completely after 120 min of grinding. The temperature of the characteristic first exothermic effect shifted slightly to lower temperatures with grinding, although the DTA effects did not increase with grinding time in either kaolinite sample, at least up to 325 min. The amorphous, mechanically activated kaolinite converted into low-crystalline mullite nuclei at a lower temperature than did the unground samples, as deduced by thermal and X-ray observations. This effect was especially important for the KGa-2 sample. Grinding did not seem to influence the formation of silicon-aluminum spinel from kaolinite. The present results may explain why ground kaolinite samples prepared via different routes-e.g., with differences in grinding-behave differently during high-temperature transformations, as reported in the related literature.
Structural transformations between the different hydration states of three vermiculite samples from Sta. Olalla (Huelva, Spain), Paulistana (Piaui, Brasil) and West China, have been observed by X-ray diffraction at atmospheric pressure, P = 1.4610 -2 mbar and P = 2.4610 -4 mbar. The samples were studied in flake and powder forms. The effect of vacuum has been proven to be the same as that of temperature, i.e. it causes dehydration of vermiculite, but with a different evolution through the different hydration states. In fact, under vacuum, the process seems to be inhibited at a one-water layer hydration state (1-WLHS), without a further dehydration of samples to a zero-water layer hydration state (0-WLHS).Furthermore, the dehydration process has been shown to occur through different interstratified states in each vermiculite. This result has been related to the interlayer Mg-cation content, due to its affinity to water molecules. The interstratified states have been analysed by the direct Fourier-transform method. The vermiculite from Sta. Olalla exhibits the most complex process, with formation of three different interstratified phases: two phases characterized by an interstratification of interplanar distances, d = 11.5 -13.8 A Ê and d = 9.6 -11.5 A Ê , respectively, and a practically segregated phase characterized by d = 13.8 A Ê . For the vermiculite from China, an interstratified phase not previously reported has been found, with an interplanar distance of 12.10 A Ê .The inhibition of dehydration at 1-WLHS, as observed, could be used in applications such as adsorption and separation technology of gases and liquids, or in heterogeneous catalysis processes.
Dry grinding of pyrophyllite (Hillsboro, USA) has been studied by X-ray diffraction (XRD), specific surface area measurements (BET) and scanning electron microscopy (SEM). At the beginning of the grinding process, some effects such as delamination, gliding and folding of the layers, and decrease in particle size were detected by SEM and XRD, resulting in a large increase in specific surface area, up to a maximum of ~ 60 m 2 . g-1. Marked changes in the structure take place between 30 and 32 mins grinding. Longer grinding times increase the degree of disorder and SEM and specific surface area data suggest that aggregation occurs. XRD results indicate that some residual order persists in the degraded structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.