Resonance frequency analysis (RFA) allows assess implant stability by measuring implant oscillation frequency on the bone. RFA is an objective and non-invasive method for implant stability measurement, although scarce evidence has been provided so far on its reliability. Objectives: Assess the Osstell ISQ system’s reliability (i.e., its measurement reproducibility and repeatability) by means of the intraclass correlation coefficient (ICC) as statistical method. Study Desing: Implants stability registers were completed by means of Osstell ISQ on 85 implants on 23 patients. Six measurements were completed on each implant by means of two different SmartPegs (types I and II); that is, three consecutive measurements with each transducer. Results: Average ISQ was 72.40, 72.22 and 72.79, and 72.06, 72.59 and 72.82 in the first, second, and third measurements with SmartPegs I and II, respectively. Equal values or differences below three ISQ points were observed in 52.9% and 62.4% of the cases with SmartPegs I and II, respectively. The intraclass correlation coefficient was 0.97 for both SmartPegs, and repeatability and reproducibility also reached 0.97 for both SmartPegs. Conclusions: The RFA system Osstell ISQ presents almost perfect repeatability and reproducibility after intraclass correlation coefficient analysis. Osstell ISQ measurements are highly reliable regarding reproducibility. Therefore, one measurement proves enough. Key words:Dental implants, RFA, ISQ, implant stability, Osstell.
Few studies assess repeatability and reproducibility in registers of resonance frequency analysis (a value of dental implant stability). Objective: Few studies assess repeatability and reproducibility in resonance frequency analyses (implant stability evaluation). This study is aimed at assessing reliability (repeatabilty and reproducibility) in the Osstell Mentor® system using the intraclass correlation coefficient (ICC) as the statistical method. Study Design: ISQ measurements of RFA were carried out by means of the Osstell Mentor® instrument in 58 implants in 19 patients. Six measurements were performed on each implant by means of two different Smart-Pegs (I and II). Three consecutive measurements were registered with each transducer. Results: Average ISQ varied from 72.43 to 72.60 and 73.26 in the first, second and third measurements, respectively with the SamrtPeg I and from 72.98 to 73.26 and 73.74 in the first, second and third measurements, respectively with the SamrtPeg II . Exactly equal values were observed in 10.43 and 12.1% of the cases with Smart-Pegs I and II, respectively. The intraclass correlation coefficient was 0.96 and 0.96 for Smart Pegs I and II, respectively. Repeatability and reproducibility was 0.97 for both Smart-Pegs I and II. Conclusions: The RFA system contributed by Osstell Mentor® renders almost perfect reproducibility and repeatability, as proven by statistical analysis carried out by means of ICC with 95% confidence level. This instrument contributes highly reliable RFA measurements in dental implants. Key words:Dental implants, RFA, ISQ, implant stability, Osstell.
Purpose: The objective of this study was to assess the influence of a novel surface of dental implants (ContacTi®) on the osseointegration process in a minipig model. The surface was compared with other existing surfaces on the market (SLA® and SLActive®) by employing bone implant contact analysis (BIC) and implant stability. Method: Twelve minipigs were used with prior authorisation from an ethics committee. Three types of surfaces were tested: SLA® (sand-blasted acid-etched titanium), SLActive® (same but hydrophilic, performed under a nitrogen atmosphere), and ContacTi® (alumina particle bombardment of titanium, bioactivated when treated thermochemically) in 4.1 mm × 8 mm implants with internal connection and a polished neck. Twelve implants of each surface type (N = 36) were placed, sacrificing 1/3 of the animals at 2 weeks of placement, 1/3 at 4 weeks and the remaining 1/3 at 8 weeks. Numerical variables were compared with Analysis of Variance, and the correlation between ISQ and BIC was established with the Spearman’s rank correlation coefficient. Results: SLActive® and ContacTi® surfaces showed elevated osteoconductivity at 4 weeks, maintaining a similar evolution at 8 weeks (large amount of mature lamellar tissue with high maturity and bone quality). The SLA® surface showed slower maturation. The ISQ values in surgery were elevated (above 65), higher at necropsy and higher at 4 and 8 weeks in the SLA® group than in the other two (SLActive® and ContacTi®). No significant correlation was found between ISQ and BIC for each implant surface and necropsy time. Conclusion: The three surfaces analysed showed high RFA and BIC values, which were more favourable for the SLActive® and ContacTi® surfaces. No statistical correlation was found between the RFA and BIC values in any of the three surfaces analysed.
Aim: (PRIMARY) Assess the changes in bone level (6 and 12 months after implant placement) between the test (definitive abutment (DEF)) and control (healing abutment (HEA)) groups. (SECONDARY) Assess the changes in bone level (6 and 12 months after implant placement) between the 1 mm high abutment group and 2 mm abutment group. Evaluate changes in implant stability recorded with analysis of the resonance frequency (RFA) Osstell system, at 6 and 12 months after implant placement, between the control group (HEA) and test (DEF). For the DEF group, the abutment was placed at the time of the surgery and was never removed. For the HEA group, the abutment was removed three times during the manufacture of the crowns. The abutments used were 1 mm high (Subgroup A) and 2 mm high (Subgroup B). Materials and methods: A total of 147 patients were selected between 54.82 ± 11.92 years old. After implant placement, patients were randomly distributed in the DEF and HEA group. After the implant placement, a periapical radiograph was taken to assess the peri-implant bone level; the same procedure was carried out 6 and 12 months post-placement. To compare the qualitative variables between the groups (HEA/DEF), the Chi-square test was used; for quantitative (MANOVA). Results: After a year, the accumulated bone loss was 0.48 ± 0.71 mm for the HEA group and 0.36 ± 0.79 mm for the DEF group, without statistical significance. Differences were only found due to timing (time) between 0 and 6 months (=0.001) and 0 and 12 months (0.001), with no differences attributable to the study groups (DEF and HEA). The accumulated bone loss (1 year) was 0.45 ± 0.78 mm for the 1 mm abutment group and 0.41 ± 0.70 mm for the 2 mm abutment group (p = 0.02). No differences were observed in implant stability between groups. Conclusions: The “One Abutment—One Time” concept does not reduce peri-implant bone loss compared to the connection–disconnection technique. The height of the abutment does influence bone loss: the higher the abutment, the lower the bone loss.
Edentulism produces resorption of alveolar bone processes, which can complicate placement of dental implants. Guided bone regeneration techniques aim to recover the volume of bone. These treatments are susceptible to the surgical technique employed, the design of the autologous block or the tension of the suture. These factors can relate to major complications as the lack of primary closure and dehiscence. The present study, using finite element analysis, aimed to determine differences in terms of displacement of the oral mucosa, transferred stress according to Von Mises and deformation of soft tissue when two block graft designs (right-angled and rounded) and two levels of suture tension (0.05 and 0.2 N) were combined. The results showed that all the variables analyzed were greater with 0.2 N. Regarding the design of the block, no difference was found in the transferred stress and deformation of the soft tissue. However, displacement was related to a tendency to dehiscence (25% greater in the right-angled/chamfer design). In conclusion different biomechanical behavior was observed in the block graft depending on the design and suture tension, so it is recommended to use low suture tension and rounded design. A novel finite element analysis model is presented for future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.