The aim of this study was to analyze the effects of different factors on the external peak demands (PD) encountered by elite, junior, male basketball players in games, including the (1) total playing time during games and (2) playing time accumulated directly prior to each PD episode. Workload variables included the PD for total distance, distance covered in different intensity zones, accelerations >2 m·s-2 (ACC), decelerations <-2 m·s-2 (DEC), and PlayerLoad. PD were calculated across different sample durations for each variable. Linear mixed models were used to identify differences in PD between groups based on playing times. PD for total distance (5-min window), high-speed running (>18 km·h-1) distance (2-min window), and ACC (30-s, 45-s, 1-min, 2-min, and 5-min windows) were significantly ( p < .05) higher for players who completed lower total playing times (16.6 ± 2.4 min) than players who completed higher total playing times (25.0 ± 3.4 min). The PD for total distance (30-s, 45-s, 1-min, and 2-min windows), high-speed running distance (30-s and 5-min windows), and PlayerLoad (1-min and 2-min windows) were significantly ( p < .05) higher for players who accumulated lower playing times before each PD episode than players who accumulated higher playing times before each PD episode. Players who undertake less playing time overall and prior to each PD episode can reach higher peak external loads aggregated across varied time windows. These findings can inform tactical coaching decisions during games for high external loads to be accomplished during important passages of play.
The purpose of this study was to compare external peak demands (PDs) across quarters (Q) in basketball. Thirteen elite, junior, male basketball players were monitored using electronic performance tracking systems. There were studied intervals for different time windows to determine the external PD for distance (m); player load; distance covered in four different zones; accelerations; and decelerations. A mixed linear model was run to identify differences among quarters, and the auto-correlation function was carried out to determine fluctuations across the whole game. The results showed significant differences between Q1 vs. Q2 for distance, player load, and standing–walking distance; between Q1 vs. Q3 for distance, player load, and HSR; between Q1 vs. Q4 for distance, player load, standing–walking, and HSR; and between Q3 vs. Q4 for distance and player load. These findings suggest that external PD for running-based demands (distance, player load, and high-speed running) decrease across basketball games with the most notable declines occurring between the first and fourth quarters. Nevertheless, it is important to note that non-significant differences were found between quarters for several external PD variables (jogging, running, acceleration, and deceleration) across different time windows. Findings from the present study reinforce the importance of considering specific PD variables for different functions due to the specific insight each provides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.