Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.
Increased reactive oxygen species (ROS) generation and the ensuing oxidative stress contribute to Alzheimer's disease pathology. We reported previously that amyloid-β peptide oligomers (AβOs) produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2), which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX) protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1 μM ATX for 1.5 h prior to AβOs addition (500 nM). We found that incubation with ATX (≤10 μM) for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1 μM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition. Longer exposures to AβOs (6 h) promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1 μM ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.
Amyloid β peptide oligomers (AβOs), toxic aggregates with pivotal roles in Alzheimer’s disease, trigger persistent and low magnitude Ca2+ signals in neurons. We reported previously that these Ca2+ signals, which arise from Ca2+ entry and subsequent amplification by Ca2+ release through ryanodine receptor (RyR) channels, promote mitochondrial network fragmentation and reduce RyR2 expression. Here, we examined if AβOs, by inducing redox sensitive RyR-mediated Ca2+ release, stimulate mitochondrial Ca2+-uptake, ROS generation and mitochondrial fragmentation, and also investigated the effects of the antioxidant N-acetyl cysteine (NAC) and the mitochondrial antioxidant EUK-134 on AβOs-induced mitochondrial dysfunction. In addition, we studied the contribution of the RyR2 isoform to AβOs-induced Ca2+ release, mitochondrial Ca2+ uptake and fragmentation. We show here that inhibition of NADPH oxidase type-2 prevented the emergence of RyR-mediated cytoplasmic Ca2+ signals induced by AβOs in primary hippocampal neurons. Treatment with AβOs promoted mitochondrial Ca2+ uptake and increased mitochondrial superoxide and hydrogen peroxide levels; ryanodine, at concentrations that suppress RyR activity, prevented these responses. The antioxidants NAC and EUK-134 impeded the mitochondrial ROS increase induced by AβOs. Additionally, EUK-134 prevented the mitochondrial fragmentation induced by AβOs, as previously reported for NAC and ryanodine. These findings show that both antioxidants, NAC and EUK-134, prevented the Ca2+-mediated noxious effects of AβOs on mitochondrial function. Our results also indicate that Ca2+ release mediated by the RyR2 isoform causes the deleterious effects of AβOs on mitochondrial function. Knockdown of RyR2 with antisense oligonucleotides reduced by about 50% RyR2 mRNA and protein levels in primary hippocampal neurons, decreased by 40% Ca2+ release induced by the RyR agonist 4-chloro-m-cresol, and significantly reduced the cytoplasmic and mitochondrial Ca2+ signals and the mitochondrial fragmentation induced by AβOs. Based on our results, we propose that AβOs-induced Ca2+ entry and ROS generation jointly stimulate RyR2 activity, causing mitochondrial Ca2+ overload and fragmentation in a feed forward injurious cycle. The present novel findings highlight the specific participation of RyR2-mediated Ca2+ release on AβOs-induced mitochondrial malfunction.
Introduction: Previous reports have proposed that Periodontal disease (PDis) predisposes to Alzheimer's disease (AD), both highly prevalent pathologies among the elderly. The bacteria Aggregatibacter actinomycetemcomitans (Aa), associated with the most aggressive forms of PDis, are classified in different serotypes with distinct virulence according to the antigenicity of their lipopolysaccharide (LPS). Methods: Here, we determined the effects of purified LPS, from serotypes a, b or c of Aa, on primary cultures of microglia or mixed hippocampal cells. Results: We found that both culture types exhibited higher levels of inflammatory cytokines (IL-1β, IL-6 and TNFα) when treated with serotype b-LPS, compared with controls, as quantified by qPCR and/or ELISA. Also, cultures treated with serotype a-LPS displayed increased mRNA levels of the modulatory cytokines IL-4 and IL-10. Mixed hippocampal cultures treated with serotype b-LPS exhibited severe neuronal morphological changes and displayed increased levels of secreted Aβ 1-42 peptide. These results indicate that LPS from different Aa serotypes triggers discriminatory immune responses, which differentially affect primary hippocampal cells. Conclusion: Altogether, our results show that treatment with serotype b-LPS triggers the secretion of proinflammatory cytokines by microglia, induces neurite shrinking, and increases the extracellular Aβ1-42 levels, all features strongly associated with the etiology of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.