There is an ever-increasing global demand from consumers for high-quality foods with major emphasis placed on quality and safety attributes. One of the main demands that consumers display is for minimally processed, high-nutrition/low-energy natural foods with no or minimal chemical preservatives. The nutritional value of raspberry fruit is widely recognized. In particular, red raspberries are known to demonstrate a strong antioxidant capacity that might prove beneficial to human health by preventing free radical-induced oxidative stress. However, food products that are consumed raw, are increasingly being recognized as important vehicles for transmission of human pathogens. Food irradiation is one of the few technologies that address both food quality and safety by virtue of its ability to control spoilage and foodborne pathogenic microorganisms without significantly affecting sensory or other organoleptic attributes of the food. Food irradiation is well established as a physical, nonthermal treatment (cold pasteurization) that processes foods at or nearly at ambient temperature in the final packaging, reducing the possibility of cross contamination until the food is actually used by the consumer. The aim of this study was to evaluate effects of gamma radiation on raspberries in order to assess consequences of irradiation. Freshly packed raspberries (Rubus idaeus L.) were irradiated in a (60)Co source at several doses (0.5, 1, or 1.5 kGy). Bioburden, total phenolic content, antioxidant activity, physicochemical properties such as texture, color, pH, soluble solids content, and acidity, and sensorial parameters were assessed before and after irradiation and during storage time up to 14 d at 4°C. Characterization of raspberries microbiota showed an average bioburden value of 10(4) colony-forming units (CFU)/g and a diverse microbial population predominantly composed of two morphological types (gram-negative, oxidase-negative rods, 35%, and filamentous fungi, 41%). The inactivation studies on the raspberries mesophilic population indicated a one log reduction of microbial load (95% inactivation efficiency for 1.5 kGy), in the surviving population mainly constituted by filamentous fungi (79-98%). The total phenolic content of raspberries indicated an increase with radiation doses and a decrease with storage time. The same trend was found for raspberries' antioxidant capacity with storage time. Regarding raspberries physicochemical properties, irradiation induced a significant decrease in firmness compared with nonirradiated fruit. However, nonirradiated and irradiated fruit presented similar physicochemical and sensory properties during storage time. Further studies are needed to elucidate the benefits of irradiation as a raspberries treatment process.
Mushrooms are especially sensitive to senescence, browning, water loss and microbial attack. Furthermore, wild species are characterized for their seasonality, demanding the development of suitable preservation technology. Gamma-irradiation was previously tested in wild Lactarius deliciosus, being verified that its application up to 1 kGy did not imply significant changes in chemical parameters. Herein, the effects of higher gammairradiation doses, typically used in natural food matrices like fruits or vegetables, were assessed in Boletus edulis Bull.: Fr. and Hydnum repandum L.: Fr. by checking for changes in nutritional parameters, free sugars, tocopherols, fatty acids, organic acids and antioxidant activity indicators. To have representative samples, the used carpophores were collected in different maturity stages, using the same number of specimens for each stage and also for each mushroom species. The specific effects of each tested irradiation were evaluated in an integrated manner through principal component analysis. The correspondent biplots indicate that differences caused by gamma-irradiation are enough to separate irradiated and non-irradiated samples of both mushrooms. Nevertheless, nutritional profiles were not affected in high extension, indicating that gamma-irradiation, up to the doses used in this work, might represent a useful mushroom conservation technology.
E-beam irradiation was studied as a post-harvest treatment for red raspberries (Rubus idaeus L.). Microbial inactivation (natural microbiota and potential pathogenic bacteria) and bioactive properties (phenolic content, vitamin C content and antioxidant activity and cytotoxicity) of these fruits were evaluated before and after irradiation and during storage of 14 days at 4°C. A reduction of 2 log CFU/g of mesophilic bacteria and 3 log CFU/g on filamentous fungi, and no detection of foodborne inoculated pathogens (3 log CFU/g) was achieved with an e-beam treatment at 3 kGy and during 7 days of refrigerated storage. Regarding bioactive properties, the results suggested that irradiation could preserve the phenolic content and antioxidant activity of raspberries through 7 days of cold storage, even though a decrease of 80% on ascorbic acid concentration was observed. Furthermore, no in vitro inhibitory effect on human cells lines was observed for the extracts from e-beam-treated raspberries. The overall results suggested that use of e-beam irradiation as post-harvest treatment of raspberries as an emergent, clean and environmental friendly process to extend the shelf-life of this fruit with safety and preservation of bioactivity. Industrial relevance: Red raspberries are known to demonstrate high bioactivity that could be beneficial to human health, but are highly perishable and often associated with foodborne outbreaks, which makes its safety and commercialization a challenge. The use of a terminal control such as irradiation might reduce the burden of disease transmission and extend the quality of fresh red raspberries. The present research indicated that e-beam irradiation can be used as post-harvest treatment of raspberries, guarantying its safety and quality with the addvalue of shelf-life extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.