Isolated CNS myelin membranes were extracted with Triton X-100 under conditions previously established for the isolation of cytoskeletal proteins. Treated myelin retained much of its characteristic lamellar structure despite the removal of most of the major myelin basic protein (18.5 kDa) and the proteolipid protein, which together normally constitute 60% of the total myelin protein. The SDS-PAGE profile of this extract residue demonstrated an enrichment in proteins of Mr 30 to 60 kilodaltons (the Wolfgram group). The major myelin proteins were identified by antibodies on Western immunoblots, as were the 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNP), actin, tubulin, myelin-associated glycoprotein (MGP) and the 21.5 kDA MBP. The overall behavior of CNP, the 21.5 kDa MBP, MGP and tubulin towards Triton extraction is reminiscent of the behavior of other membrane-skeletal complexes, supporting the idea that these and other minor myelin proteins might be part of heteromolecular complexes with interactions spanning several lamellae of the myelin sheath.
An extensive scheme for the subcellular fractionation of myelinating mouse brain is presented. Several centrifugation procedures for the separation of membranes involved in myelinogenesis are critically appraised, and guidelines for selection of centrifugation conditions are given. Characteristics of subcellular fractions are presented in the form of electron micrographs; also presented are distribution of RNA and protein; electrophoretic profiles of membrane proteins, and verification of the myelin-specific basic proteins, proteolipid protein, and glycoprotein by the immuno-electroblot technique; and the distribution of eight marker enzyme activities. Myelin-related membranes were found to differ both qualitatively and quantitatively in their complement of myelin-specific proteins. These myelin-containing fractions appear to represent different stages of myelination that coexist in developing mouse brain. These results provide the fundamental methodologies and background information for kinetic radioisotope analysis of intracellular events in the assembly of myelin presented in a companion article.
Abnormalities of the respiratory control system have been implicated in the cause of death in sudden infant death syndrome (SIDS). The vagus nerve is a major component of the neural regulation of respiration. Ultrastructural quantitative morphometry of myelinated and unmyelinated fibers was performed on cervical vagus nerves taken from 30 SIDS victims and 29 age-matched controls between 1 and 9 months of age. In SIDS infants, more small and fewer large myelinated vagal fibers were found than in controls, suggesting that the vagus nerve in SIDS is relatively immature. Delayed vagal nerve maturation, together with delays in central nervous system myelination and dendritic development, indicates a neural developmental delay in SIDS, the cause of which is undetermined.
The question of developmental relationships amongst myelin-related membranes in subfractions of myelinating mouse brain (15 days) was investigated by a time-staggered double isotope protocol using [3H]leucine and [14C]leucine. Preliminary results are interpreted and discussed in the context of a mathematical conceptualization of pulse-labeling kinetic analyses of myelin proteins in subcellular membrane compartments. Differences in ratio of the two leucine labels among proteins of myelin-containing subfractions are interpreted as confirming metabolic differences relating to various stages of development rather than precursor-product relationships. The incorporation into myelin of 14K, 17K, and 18.5K basic proteins (MBPs) occurs with relatively short delay times, following their synthesis (less than 5 min), and seems to occur simultaneously into all compartments. The 21.5K MBP and the proteolipid protein, on the other hand, require 10-14 min and 14-20 min, respectively. A scheme is presented to illustrate the probable assignment of subfractions to various myelin "compartments" during myelination, and to serve as a working hypothesis for studies on precursor-product relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.