Abstract:We propose two ways to compute the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. We use the so-called space of circles as mathematical background for this work. We present a fully robust implementation built upon existing generic algorithms provided by the cgal library. The eciency of the implementation is established by benchmarks. Nous proposons deux façons de calculer la triangulation de Delaunay d'un ensemble de points qui appartiennent soit à la sphère, soit à son voisinage. Ces deux méthodes reposent sur l'algorithme incrémental classique, tel qu'il a été créé à l'origine pour calculer les triangulations de Delaunay planaires. Le cadre mathématique classique justiant cette approche est rappelé, à l'aide de l'espace des cercles. Ces deux approches ont été implantées de façon robuste en s'appuyant sur les algorithmes génériques fournis par la bibliothèque CGAL. Des tests comparatifs montrent l'ecacité de nos implantations sur des jeux de données de taille variée.
International audienceIn this article, we study the intersection (or union) of the convex hull of N confocal paraboloids (or ellipsoids) of revolution. This study is motivated by a Minkowski-type problem arising in geometric optics. We show that in each of the four cases, the combinatorics is given by the intersection of a power diagram with the unit sphere. We prove the complexity is O(N) for the intersection of paraboloids and Omega(N^2) for the intersection and the union of ellipsoids. We provide an algorithm to compute these intersections using the exact geometric computation paradigm. This algorithm is optimal in the case of the intersection of ellipsoids and is used to solve numerically the far-field reflector problem
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.