Background
The emergence of insecticide resistance is a fast-paced example of the evolutionary process of natural selection. In this study, we investigated the molecular basis of resistance in the myiasis-causing fly Cochliomyia hominivorax (Diptera: Calliphoridae) to dimethyl-organophosphate (OP) insecticides.
Methods
By sequencing the RNA from surviving larvae treated with dimethyl-OP (resistant condition) and non-treated larvae (control condition), we identified genes displaying condition-specific polymorphisms, as well as those differentially expressed.
Results
Both analyses revealed that resistant individuals have altered expression and allele-specific expression of genes involved in proteolysis (specifically serine-endopeptidase), olfactory perception and cuticle metabolism, among others. We also confirmed that resistant individuals carry almost invariably the Trp251Ser mutation in the esterase E3, known to confer OP and Pyrethroid resistance. Interestingly, genes involved in metabolic and detoxifying processes (notably cytochrome P450s) were found under-expressed in resistant individuals. An exception to this were esterases, which were found up-regulated.
Conclusions
These observations suggest that reduced penetration and aversion to dimethyl-OP contaminated food may be important complementary strategies of resistant individuals. The specific genes and processes found are an important starting point for future functional studies. Their role in insecticide resistance merits consideration to better the current pest management strategies.
Spiders constitute more than 49,000 described species distributed all over the world, and all ecological environments. Their order, Araneae, is defined by a set of characteristics with no parallel among their arachnid counterparts (e.g., spinnerets, silk glands, chelicerae that inoculate venom, among others). Changes in developmental pathways often underlie the evolution of morphological synapomorphies, and as such spiders are a promising model to study the role of developmental genes in the origin of evolutionary novelties. With that in mind, we investigated changes in the evolutionary regime of a set of six developmental genes, using spiders as our model. The genes were mainly chosen for their roles in spinneret ontogeny, yet they are pleiotropic, and it is likely that the origins of other unique morphological phenotypes are also linked to changes in their sequences. Our results indicate no great differences in the selective pressures on those genes when comparing spiders to other arachnids, but a few site‐specific positive selection evidence were found in the Araneae lineage. These findings lead us to new insights on spider evolution that are to be further tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.