Background Protein–peptide interactions play a fundamental role in a wide variety of biological processes, such as cell signaling, regulatory networks, immune responses, and enzyme inhibition. Peptides are characterized by low toxicity and small interface areas; therefore, they are good targets for therapeutic strategies, rational drug planning and protein inhibition. Approximately 10% of the ethical pharmaceutical market is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions are mediated by peptides. Despite the fast increase in the volume of biological data, particularly on sequences and structures, there remains a lack of broad and comprehensive protein–peptide databases and tools that allow the retrieval, characterization and understanding of protein–peptide recognition and consequently support peptide design. Results We introduce Propedia, a comprehensive and up-to-date database with a web interface that permits clustering, searching and visualizing of protein–peptide complexes according to varied criteria. Propedia comprises over 19,000 high-resolution structures from the Protein Data Bank including structural and sequence information from protein–peptide complexes. The main advantage of Propedia over other peptide databases is that it allows a more comprehensive analysis of similarity and redundancy. It was constructed based on a hybrid clustering algorithm that compares and groups peptides by sequences, interface structures and binding sites. Propedia is available through a graphical, user-friendly and functional interface where users can retrieve, and analyze complexes and download each search data set. We performed case studies and verified that the utility of Propedia scores to rank promissing interacting peptides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we showed that Propedia scores related to similarity between different peptide complexes with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy calculation. Conclusions Propedia is a database and tool to support structure-based rational design of peptides for special purposes. Protein–peptide interactions can be useful to predict, classifying and scoring complexes or for designing new molecules as well. Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful interface and is available at: https://bioinfo.dcc.ufmg.br/propedia
The advent of the high‐throughput next‐generation sequencing produced a large number of biological data. Knowledge discovery from the huge amount of available biological data requires researchers to develop solid skills in biology and computer science. As the majority of the Bioinformatics professionals are either computer science or life sciences graduates, to teach biology skills to computer science students and computational skills to life science students has become usual. In this article, we reported the experience of teaching programming for life science students. Our strategy is composed by explaining basic concepts of algorithms, abstraction of biological problems, and script programming using Python language. Based on the student's answers to an assessment questionnaire, we conclude that the course achieved positive results. They reported an improvement in their skills in programming and bioinformatics. Furthermore, the students approved the didactic adopted in the classes and evaluation methods (programming exercises and final presentation). This article is useful for other professors who want to implement an initial bioinformatics training for undergraduate or graduate students in life sciences. We believe that the strategies here demonstrated could be reproduced, which could help in the formation of a new generation of bioinformaticians with hybrid abilities in computation and biology. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):288–295, 2019.
BackgroundA huge amount of data about genomes and sequence variation is available and continues to grow on a large scale, which makes experimentally characterizing these mutations infeasible regarding disease association and effects on protein structure and function. Therefore, reliable computational approaches are needed to support the understanding of mutations and their impacts. Here, we present VERMONT 2.0, a visual interactive platform that combines sequence and structural parameters with interactive visualizations to make the impact of protein point mutations more understandable.ResultsWe aimed to contribute a novel visual analytics oriented method to analyze and gain insight on the impact of protein point mutations. To assess the ability of VERMONT to do this, we visually examined a set of mutations that were experimentally characterized to determine if VERMONT could identify damaging mutations and why they can be considered so.ConclusionsVERMONT allowed us to understand mutations by interpreting position-specific structural and physicochemical properties. Additionally, we note some specific positions we believe have an impact on protein function/structure in the case of mutation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1789-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.