Time-domain full-field OCT (FF-OCT) represents an imaging modality capable of recording high-speed en-face sections of a sample at a given depth. One of the biggest challenges to transfer this technique to image in-vivo human retina is the presence of continuous involuntary head and eye axial motion during image acquisition. In this paper, we demonstrate a solution to this problem by implementing an optical stabilization in an FF-OCT system. This was made possible by combining an FF-OCT system, an SD-OCT system, and a high-speed voice-coil translation stage. B-scans generated by the SD-OCT were used to measure the retina axial position and to drive the position of the high-speed voice coil translation stage, where the FF-OCT reference arm is mounted. Closed-loop optical stabilization reduced the RMS error by a factor of 7, significantly increasing the FF-OCT image acquisition efficiency. By these means, we demonstrate the capacity of the FF-OCT to resolve cone mosaic as close as 1.5 o from the fovea center with high consistency and without using adaptive optics.
The design and performance of an adaptive optics flood illumination ophthalmoscope (AO-FIO) platform, based on eye motion and dynamic aberrations experimental analysis, are described. The system incorporates a custom-built real-time controller, enabling up to 70 Hz loop rate without jitter, and an AO-corrected illumination capable of projecting high-resolution features in the retina. Wide-field (2.7°×5.4°) and distortionless images from vessel walls, capillaries, and the lamina cribrosa are obtained with an enhanced contrast and signal-to-noise ratio, thanks to careful control of AO parameters. The high spatial and temporal resolution (image acquisition up to 200 Hz) performance achieved by this platform enables the visualization of vessel deformation and blood flow. This system opens up the prospect of a return to favor of flood illumination adaptive optics systems provided that its high pixel rate and structured illumination capabilities are exploited.
Optical coherence tomography angiography is evolving towards wider fields of view. As single widefield acquisitions have a lower resolution, preventing an accurate segmentation of vascular plexuses in the periphery, we examined the retinal vascularisation from the macula to the periphery in all retinal quadrants, using 3 × 3-mm volume scans, to obtain montages with sufficient image resolution up to 11 mm from the foveal centre. Images were qualitatively and quantitatively analysed, using C-and B-scan approaches to calculate the capillary density (CD) and the interplexus distance (IPD). three vascular plexuses (i.e., superficial vascular plexus: SVP, intermediate capillary plexus: ICP, and deep capillary plexus: DCP) were observed up to the mid-periphery in all sectors. The CD of the SVP decreased from about 5 mm of eccentricity, along with ganglion cell density decrease. The CD of the icp progressively decreased from the fovea towards the periphery, along with the retinal thinning and then vanished from 8 to 9 mm of eccentricity, becoming undetectable beyond. This ICP disappearance resulted in an increased IPD between the SVP and the DCP in an area known to be frequently affected by capillary drop-out in diabetic retinopathy. The DCP only showed a slightly decreased CD towards the retinal periphery.Thus, it becomes important to better know the morphology, distribution and density of the different capillary plexuses from the fovea to the periphery. However, although WF-OCTA provides an image of the whole retinal capillary network that is qualitatively better than FA images, the resolution and segmentation of each capillary plexus with wider scans (i.e., 12 × 12-mm C-scans) is not sufficient to reliably assess the capillary plexuses and measure the capillary density (CD) 17,18 .The aim of this study was to evaluate the normal retinal vascularisation from the fovea to the far periphery. To overcome some of the limitations of wider scans, montages of small-field (3 × 3-mm) OCTA C-scans were used to provide a better resolution and fewer segmentation artefacts. MethodsDemographics. This study, conducted in the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.