This paper presents a methodology for determining the optimal portfolio allocation for a demand response aggregator. The formulation is based on Day-Ahead electricity prices, in which the aggregator coordinates a set of residential consumers that are recruited through contracts. Four types of contracts are analyzed, considering both direct and indirect demand response programs. The objective is to compare different scenarios for contract portfolios in order to establish the benefits of each market agent. An optimization problem is formulated to capture the interactions between the aggregator and end consumers. The model is formulated as a mathematical program with equilibrium constraints: At the upper level, the aggregator maximizes its benefits, whereas the lower level represents the consumers’ contracts. By applying the developed methodology, the characterization of the consumers’ behavior is established in order to forecast their responses to the generation of punctual incentives, both for usual scenarios and peak events, as well as to evaluate the impact that direct and indirect control contracts have on the performance of the aggregator as the energy price varies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.