The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.
In 2011 a measurement intercomparison was launched by EURADOS WG7, with the objective of providing the participants with the tools to calibrate their detection systems for detection of 241 Am in the skull bone, and evaluate the variability due to the used of the different calibration phantoms. Three skull phantoms were used in this intercomparison: the USTUR Case 0102 skull phantom, the BfS skull phantom and the CSR skull phantom. Very good agreement was found between the results of the twelve participating laboratories, with relative deviations of less than 15% for the BfS phantom and less than 17% for the USTUR phantom when measurement efficiency in defined positions was compared. However, the phantoms' measured absolute 241 Am activities showed discrepancies of up to a factor of 3.4. This is mainly due to the physical differences between the standard calibration phantoms used by the participants and those used in this intercomparison exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.