IntroductionPlasma amyloid β (Aβ) peptides have been previously studied as candidate biomarkers to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease.MethodsFree and total Aβ42/40 plasma ratios (FP42/40 and TP42/40, respectively) were determined using ABtest assays in cognitively normal subjects from the Australian Imaging, Biomarker and Lifestyle Flagship Study. This population was followed-up for 72 months and their cortical Aβ burden was assessed with positron emission tomography.ResultsCross-sectional and longitudinal analyses showed an inverse association of Aβ42/40 plasma ratios and cortical Aβ burden. Optimized as a screening tool, TP42/40 reached 81% positive predictive value of high cortical Aβ burden, which represents 110% increase over the population prevalence of cortical Aβ positivity.DiscussionThese findings support the use of plasma Aβ42/40 ratios as surrogate biomarkers of cortical Aβ deposition and enrichment tools, reducing the number of subjects submitted to invasive tests and, consequently, recruitment costs in clinical trials targeting cognitively normal individuals.
April 2020 ADNI study, MCI patients were recruited from many different clinics between September 2005 and December 2019, and thereby represent a more selected sample (i.e. closer to a clinical trial population). Though this difference could introduce bias, the fact that our findings held when validated in both cohorts-and were consistent even when performing sensitivity analyses-speaks to their robustness. Ethics oversight For BioFINDER, ethical approval was given by the Regional Ethical Committee of Lund University. Ethical approval in ADNI was given by the local ethical committees. The Ethics committees/institutional review boards that approved the ADNI study are:
ObjectiveTo explore whether the plasma total β-amyloid (Aβ) Aβ 42 /Aβ 40 ratio is a reliable predictor of the amyloid-PET status by exploring the association between these 2 variables in a subset of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging cohort.
Introduction:We studied usefulness of combining blood amyloid beta (Aβ)42/Aβ40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aβ deposition in different stages of early Alzheimer's disease (AD).Methods: Plasma biomarkers were measured using mass spectrometry (Aβ42/Aβ40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2).
Results:In CU, a combination of plasma Aβ42/Aβ40 and p-tau217 detected abnormal brain Aβ status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or Aβ42/Aβ40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implementedThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
The Alzheimer's Association's Research Roundtable met in May 2014 to explore recent progress in developing biomarkers to improve understanding of disease pathogenesis and expedite drug development. Although existing biomarkers have proved extremely useful for enrichment of subjects in clinical trials, there is a clear need to develop novel biomarkers that are minimally invasive and that more broadly characterize underlying pathogenic mechanisms, including neurodegeneration, neuroinflammation, and synaptic dysfunction. These may include blood-based assays and new neuropsychological testing protocols, as well as novel ligands for positron emission tomography imaging, and advanced magnetic resonance imaging methodologies. In addition, there is a need for biomarkers that can serve as theragnostic markers of response to treatment. Standardization remains a challenge, although international consortia have made substantial progress in this area and provide lessons for future standardization efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.