Abstract-Simultaneous localization and mapping (SLAM) algorithms based on local maps have been demonstrated to be well suited for mapping large environments as they reduce the computational cost and improve the consistency of the final estimation. The main contribution of this paper is a novel submapping technique that does not require independence between maps. The technique is based on the intrinsic structure of the SLAM problem that allows the building of submaps that can share information, remaining conditionally independent. The resulting algorithm obtains local maps in constant time during the exploration of new terrain and recovers the global map in linear time after simple loop closures without introducing any approximations besides the inherent extended Kalman filter linearizations. The memory requirements are also linear with the size of the map. As the algorithm works in a covariance form, well-known data-association techniques can be used in the usual manner. We present experimental results using a handheld monocular camera, building a map along a closedloop trajectory of 140 m in a public square, with people and other clutter. Our results show that the combination of conditional independence, which enables the system to share the camera and feature states between submaps, and local coordinates, which reduce the effects of linearization errors, allow us to obtain precise maps of large areas with pure monocular SLAM in real time.
We propose a novel method to fit and segment multistructural data via convex relaxation. Unlike greedy methodswhich maximise the number of inliers-this approach efficiently searches for a soft assignment of points to models by minimising the energy of the overall classification. Our approach is similar to state-of-the-art energy minimisation techniques which use a global energy. However, we deal with the scaling factor (as the number of models increases) of the original combinatorial problem by relaxing the solution. This relaxation brings two advantages: first, by operating in the continuous domain we can parallelize the calculations. Second, it allows for the use of different metrics which results in a more general formulation.We demonstrate the versatility of our technique on two different problems of estimating structure from images: plane extraction from RGB-D data and homography estimation from pairs of images. In both cases, we report accurate results on publicly available datasets, in most of the cases outperforming the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.