IntroductionGrowth arrest-specific gene 6 protein (GAS6) and protein S (ProS) are vitamin K-dependent proteins present in plasma with important regulatory functions in systems of response and repair to damage. They interact with receptor tyrosine kinases of the Tyro3, Axl and MerTK receptor tyrosine kinase (TAM) family, involved in apoptotic cell clearance (efferocytosis) and regulation of the innate immunity. TAM-deficient mice show spontaneous lupus-like symptoms. Here we tested the genetic profile and plasma levels of components of the system in patients with systemic lupus erythematosus (SLE), and compare them with a control healthy population.MethodsFifty SLE patients and 50 healthy controls with matched age, gender and from the same geographic area were compared. Genetic analysis was performed in GAS6 and the TAM receptor genes on SNPs previously identified. The concentrations of GAS6, total and free ProS, and the soluble forms of the three TAM receptors (sAxl, sMerTK and sTyro3) were measured in plasma from these samples.ResultsPlasma concentrations of GAS6 were higher and, total and free ProS were lower in the SLE patients compared to controls, even when patients on oral anticoagulant treatment were discarded. Those parameters correlated with SLE disease activity index (SLEDAI) score, GAS6 being higher in the most severe cases, while free and total ProS were lower. All 3 soluble receptors increased its concentration in plasma of lupus patients.ConclusionsThe present study highlights that the GAS6/ProS-TAM system correlates in several ways with disease activity in SLE. We show here that this correlation is affected by common polymorphisms in the genes of the system. These findings underscore the importance of mechanism of regulatory control of innate immunity in the pathology of SLE.
Myocardial expression and serum concentration of AXL is elevated in HF patients compared to controls. Furthermore, peripheral sAXL correlates with parameters associated with the progression of HF and with HF events at short term follow-up. All together these results suggest that sAXL could belong to a new molecular pathway involved in myocardial damage in HF, independent from BNP.
The GAS6/ProS-TAM system is composed of two vitamin K-dependent ligands (GAS6 and protein S) and their three protein tyrosine kinase receptors TYRO3, AXL and MERTK, known as the TAM receptors. The system plays a prominent role in conditions of injury, inflammation and repair. In murine models of atherosclerotic plaque formation, mutations in its components affect atherosclerosis severity. Here we used Taqman low-density arrays and immunoblotting to study mRNA and protein expression of GAS6, ProS and the TAM receptors in human carotid arteries with different degrees of atherosclerosis. The results show a clear down-regulation of the expression of AXL in atheroma plaques with respect to normal carotids that is matched by decreased abundance of AXL in protein extracts detected by immunoblotting. A similar decrease was observed in PROS1 mRNA expression in atherosclerotic carotids compared to the normal ones, but in this case protein S (ProS) was clearly increased in protein extracts of carotid arteries with increasing grade of atherosclerosis, suggesting that ProS is carried into the plaque. MERTK was also increased in atherosclerotic carotid arteries with respect to the normal ones, suggesting that the ProS-MERTK axis is functional in advanced human atherosclerotic plaques. MERTK was expressed in macrophages, frequently in association with ProS, while ProS was abundant also in the necrotic core. Our data suggest that the ProS-MERTK ligand-receptor pair was active in advanced stages of atherosclerosis, while AXL signalling is probably down-regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.