We establish a close and previously unknown relation between quantales and groupoids, in terms of which the notion ofétale groupoid is subsumed in a natural way by that of quantale. In particular, to eachétale groupoid, either localic or topological, there is associated a unital involutive quantale. We obtain a bijective correspondence between localicétale groupoids and their quantales, which are given a rather simple characterization and are here called inverse quantal frames. We show that the category of inverse quantal frames is equivalent to the category of complete and infinitely distributive inverse monoids, and as a consequence we obtain a correspondence between these and localicétale groupoids that generalizes more classical results concerning inverse semigroups and topologicalétale groupoids. This generalization is entirely algebraic and it is valid in an arbitrary topos. As a consequence of these results we see that a localic groupoid isétale if and only if its sublocale of units is open and its multiplication map is semiopen, and an analogue of this holds for topological groupoids. In practice we are provided with new tools for constructing localic and topologicalétale groupoids, as well as inverse semigroups, for instance via presentations of quantales by generators and relations. The characterization of inverse quantal frames is to a large extent based on a new quantale operation, here called a support, whose properties are thoroughly investigated, and which may be of independent interest.
It is well known that inverse semigroups are closely related toétale groupoids. In particular, it has recently been shown that there is a (non-functorial) equivalence between localicétale groupoids, on one hand, and complete and infinitely distributive inverse semigroups (abstract complete pseudogroups), on the other. This correspondence is mediated by a class of quantales, known as inverse quantal frames, that are obtained from the inverse semigroups by a simple join completion that yields an equivalence of categories. Hence, we can regard abstract complete pseudogroups as being essentially "the same" as inverse quantal frames, and in this paper we exploit this fact in order to find a suitable replacement for inverse semigroups in the context of open groupoids that are not necessarilyétale. The interest of such a generalization lies in the importance and ubiquity of open groupoids in areas such as operator algebras, differential geometry and topos theory, and we achieve it by means of a class of quantales, called open quantal frames, which generalize inverse quantal frames and whose properties we study in detail. The resulting correspondence between quantales and open groupoids is not a straightforward generalization of the previous results concerningétale groupoids, and it depends heavily on the existence of inverse semigroups of local bisections of the quantales involved.
Abstract. The classical theory of invariant means, which plays an important rôle in the theory of paradoxical decompositions, is based upon what are usually termed 'pseudogroups'. Such pseudogroups are in fact concrete examples of the Boolean inverse monoids which give rise toétale topological groupoids under non-commutative Stone duality. We accordingly initiate the theory of invariant means on arbitrary Boolean inverse monoids. Our main theorem is a characterization of when a Boolean inverse monoid admits an invariant mean. This generalizes the classical Tarski alternative proved, for example, by de la Harpe and Skandalis, but using different methods.
The approach to process semantics using quantales and modules is topologized by considering tropological systems whose sets of states are replaced by locales and which satisfy a suitable stability axiom. A corresponding notion of localic suplattice (algebra for the lower powerlocale monad) is described, and it is shown that there are contravariant functors from sup-lattices to localic sup-latices and, for each quantale Q, from left Q-modules to localic right Q-modules. A proof technique for third completeness due to Abramsky and Vickers is reset constructively, and an example of application to failures semantics is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.