In this paper we describe an approach to resolve strategic games in which
players can assume different types along the game. Our goal is to infer which
type the opponent is adopting at each moment so that we can increase the
player's odds. To achieve that we use Markov games combined with hidden Markov
model. We discuss a hypothetical example of a tennis game whose solution can be
applied to any game with similar characteristics.Comment: In Proceedings DCM 2013, arXiv:1403.768
This work proposes a new methodology for the Group Recommendation problem. In this approach we choose the Most Representative User (MRU) as the group medoid in a user space projection, and then generate the recommendation list based on his preferences. We evaluate our proposal by using the well-known dataset Movielens. We have taken two different measures so as to evaluate the group recommender strategies. The obtained results seem promising and our strategy has shown an empirical robustness compared with the baselines in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.