We consider a separable complete metric space equipped with a convex combination operation. For such spaces, we identify the corresponding convexification operator and show that the invariant elements for this operator appear naturally as limits in the strong law of large numbers. It is shown how to uplift the suggested construction to work with subsets of the basic space in order to develop a systematic way of proving laws of large numbers for such operations with random sets.
The law of large numbers is studied under a weakening of the axiomatic properties of a probability measure. Averages do not generally converge to a point, but they are asymptotically confined in a limit set for any random variable satisfying a natural ‘finite first moment’ condition. It is also shown that their behaviour can depart strikingly from the intuitions developed in the additive case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.