Theobromine is a caffeine metabolite most abundant in dark chocolate, of which consumption is linked with a lower risk of cognitive decline. However, the mechanisms through which theobromine affects neuronal function remain ill-defined. Using electrophysiological recordings in mouse hippocampal synapses, we now characterized the impact of a realistic concentration of theobromine on synaptic transmission and plasticity. Theobromine (30 μM) facilitated synaptic transmission while decreasing the magnitude of long-term potentiation (LTP), with both effects being blunted by adenosine deaminase (2 U/mL). The pharmacological blockade of A1R with DPCPX (100 nM) eliminated the theobromine-dependent facilitation of synaptic transmission, whereas the A2AR antagonist SCH58261 (50 nM), as well as the genetic deletion of A2AR, abrogated the theobromine-induced impairment of LTP. Furthermore, theobromine prevented LTP deficits and neuronal loss, respectively, in mouse hippocampal slices and neuronal cultures exposed to Aβ1–42 peptides, considered a culprit of Alzheimer’s disease. Overall, these results indicate that theobromine affects information flow via the antagonism of adenosine receptors, normalizing synaptic plasticity and affording neuroprotection in dementia-related conditions in a manner similar to caffeine.
The adenosine modulation system is mostly composed by inhibitory A1 receptors (A1R) and the less abundant facilitatory A2A receptors (A2AR), the latter selectively engaged at high frequency stimulation associated with synaptic plasticity processes in the hippocampus. A2AR are activated by adenosine originated from extracellular ATP through ecto-5’-nucleotidase or CD73-mediated catabolism. Using hippocampal synaptosomes, we now investigated how adenosine receptors modulate the synaptic release of ATP. The A2AR agonist CGS21680 (10-100 nM) enhanced the K+-evoked release of ATP, whereas both SCH58261 and the CD73 inhibitor α,β-methylene ADP (100 μM) decreased ATP release; all these effects were abolished in forebrain A2AR knockout mice. The A1R agonist CPA (10-100 nM) inhibited ATP release, whereas the A1R antagonist DPCPX (100 nM) was devoid of effects. The presence of SCH58261 potentiated CPA-mediated ATP release and uncovered a facilitatory effect of DPCPX. Overall, these findings indicate that ATP release is predominantly controlled by A2AR, which are involved in an apparent feedback loop of A2AR-mediated increased ATP release together with dampening of A1R-mediated inhibition. This study is a tribute to María Teresa Miras-Portugal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.