The penetration of wind generation into AC micro-grids (MGs) has been increasing in recent years. Wind generation is uncontrollable, variable in nature, and uncertain. If the penetration level is high, the random variations of the wind power generation could cause problems for MGs to maintain the nominal system frequency. A typical solution is to employ energy storage systems (ESS) into the MG in order to compensate the wind power fluctuations. In this chapter, the use of a vanadium redox flow battery (VRFB) coupled with a power conditioning system (PCS) is suggested to enhance the frequency stability of a MG with high wind power penetration. A new control system is developed for the PCS/VRFB. The control system performs the load leveling of the wind generation and carries out the primary and secondary frequency control of the MG. Dynamic simulations of the proposed device are performed and demonstrate that the new control system improves the transient responses of the PCS/VRFB and the MG, during minor and/or severe disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.