Myofibroblast differentiation and activation by transforming growth factor-beta1 (TGF-beta1) is a critical event in the pathogenesis of human fibrotic diseases, but regulatory mechanisms for this effect are unclear. In this report, we demonstrate that stable expression of the myofibroblast phenotype requires both TGF-beta1 and adhesion-dependent signals. TGF-beta1-induced myofibroblast differentiation of lung fibroblasts is blocked in non-adherent cells despite the preservation of TGF-beta receptor(s)-mediated signaling of Smad2 phosphorylation. TGF-beta1 induces tyrosine phosphorylation of focal adhesion kinase (FAK) including that of its autophosphorylation site, Tyr-397, an effect that is dependent on cell adhesion and is delayed relative to early Smad signaling. Pharmacologic inhibition of FAK or expression of kinase-deficient FAK, mutated by substituting Tyr-397 with Phe, inhibit TGF-beta1-induced alpha-smooth muscle actin expression, stress fiber formation, and cellular hypertrophy. Basal expression of alpha-smooth muscle actin is elevated in cells grown on fibronectin-coated dishes but is decreased on laminin and poly-d-lysine, a non-integrin binding polypeptide. TGF-beta1 up-regulates expression of integrins and fibronectin, an effect that is associated with autophosphorylation/activation of FAK. Thus, a safer and more effective therapeutic strategy for fibrotic diseases characterized by persistent myofibroblast activation may be to target this integrin/FAK pathway while not interfering with tumor-suppressive functions of TGF-beta1/Smad signaling.
Familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion, is linked to chromosome 11p14-15.1. The newly cloned high-affinity sulfonylurea receptor (SUR) gene, a regulator of insulin secretion, was mapped to 11p15.1 by means of fluorescence in situ hybridization. Two separate SUR gene splice site mutations, which segregated with disease phenotype, were identified in affected individuals from nine different families. Both mutations resulted in aberrant processing of the RNA sequence and disruption of the putative second nucleotide binding domain of the SUR protein. Abnormal insulin secretion in PHHI appears to be caused by mutations in the SUR gene.
The bone-specific transcription factor, Cbfa1, regulates expression of the osteocalcin (OCN) gene and is essential for bone formation. However, little is known about the mechanisms regulating Cbfa1 activity. This work examines the role of the MAPK pathway in regulating Cbfa1-dependent transcription. Stimulation of MAPK by transfecting a constitutively active form of MEK1, MEK(SP), into MC3T3-E1 preosteoblast cells increased endogenous OCN mRNA, while a dominant negative mutant, MEK(DN), was inhibitory. MEK(SP) also stimulated activity of a 147-base pair minimal OCN promoter, and this stimulation required an intact copy of OSE2, the DNA binding site for Cbfa1. Effects of MEK(SP) were specific to Cbfa1-positive osteoblast-like cells. A purified His-tagged Cbfa1 fusion protein was directly phosphorylated by activated recombinant MAPK in vitro. Furthermore, (32)P metabolic labeling studies demonstrated that MEK(SP) clearly enhanced phosphorylation of Cbfa1 in intact cells, while MEK(DN) decreased phosphorylation. The specific MEK1/MEK2 inhibitor, PD98059, inhibited extracellular matrix-dependent up-regulation of the OCN promoter, indicating that the MAPK pathway and, presumably, Cbfa1 phosphorylation are also required for responsiveness of osteoblasts to extracellular matrix signals. This study is the first demonstration that Cbfa1 is controlled by MAPKs and suggests that this pathway has an important role in the control of osteoblast-specific gene expression.
Transforming growth factor-1 (TGF-1) is a multifunctional cytokine involved in differentiation, growth, and survival of mesenchymal cells while inhibiting growth/ survival of most other cell types. The mechanism(s) of pro-survival signaling by TGF-1 in mesenchymal cells is unclear. In this report, we demonstrate that TGF-1 protects against serum deprivation-induced apoptosis of mesenchymal cells isolated from patients with acute lung injury and of normal human fetal lung fibroblasts (IMR-90). TGF- receptor(s)-activated signaling in these cells involves rapid activation of the Smad and p38 MAPK pathways within minutes of TGF-1 treatment followed by a more delayed activation of the pro
Closure of ATP-sensitive potassium channels in pancreatic islet beta-cells initiates a cascade of events that leads to insulin secretion. beta-Cell ATP-sensitive potassium currents can be reconstituted by coexpression of the inward rectifier Kir6.2 and the sulfonylurea receptor (SUR), a member of the ATP-binding cassette superfamily. Mutations in SUR have been identified in individuals affected with familial persistent hyper-insulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder of glucose metabolism which is linked to chromosome 11p15.1 and characterized by unregulated secretion of insulin and profound hypoglycemia. Because the Kir6.2 locus is within 5 kilobases (kb) of the SUR gene on chromosome 11p15.1 and it is a necessary member of the beta-cell KATP channel, we considered Kir6.2 as a candidate gene for PHHL we identified a homozygous point mutation in Kir6.2 in the genomic DNA of a child, severely affected with PHHI, from a consanguineous family. This mutation is predicted to disrupt the conserved alpha-helical second transmembrane (M2) domain of the inward rectifier by substitution of a proline for a leucine residue (L147P). Mutation of Kir6.2, like SUR, appears to lead to the PHHI phenotype suggesting that Kir6.2 is necessary, although not sufficient, for normal regulation of insulin release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.