BackgroundClinical observation of aberrant movement patterns during active forward bending is one criterion used to identify patients with non-specific low back pain suspected to have movement coordination impairment. The purpose of this study was to describe and quantify kinematic patterns of the pelvis and trunk using a dynamics systems approach, and determine agreement between clinical observation and kinematic classification.MethodNinety-eight subjects performed repeated forward bending with clinical observation and kinematic data simultaneously collected. Kinematic data were plotted using angle-angle, coupling-angle, and phase-plane diagrams. Accuracy statistics in conjunction with receiver operating characteristic curves were used to determine agreement between clinical observation and kinematic patterns.ResultsKinematic patterns were consistent with clinical observation and definitions of typical and aberrant movement patterns with moderate agreement (kappa = 0.46–0.50; PABAK = 0.49–0.73). Early pelvic motion dominance in lumbopelvic coupling-angle diagram ≥59° within the first 38% of the movement represent observed altered lumbopelvic rhythm. Frequent disruptions in lumbar spine velocity represented by phase-plane diagrams with local minimum occurrences ≥6 and sudden decoupling in lumbopelvic coupling-angle diagrams with sum of local minimum and maximum occurrences ≥15 represent observed judder.ConclusionThese findings further define observations of movement coordination between the pelvis and lumbar spine for the presence of altered lumbopelvic rhythm and judder. Movement quality of the lumbar spine segment is key to identifying judder. This information will help clinicians better understand and identify aberrant movement patterns in patients with non-specific low back pain.
The objective of this technical paper is to demonstrate how graphing kinematic data to represent body segment coordination and control can assist clinicians and researchers in understanding typical and aberrant human movement patterns. Aberrant movements are believed to be associated with musculoskeletal pain and dysfunction. A dynamical systems approach to analyzing movement provides a useful way to study movement control and coordination. Continuous motion angle-angle and coupling angle-movement cycle graphs provide information about coordinated movement between body segments, whereas phase-plane graphs provide information about neuromuscular control of a body segment. Examples demonstrate how a dynamical systems approach can be used to represent (1) typical movement patterns of the lumbopelvic and shoulder regions; (2) aberrant coordination in an individual with low back pain who presented with altered lumbopelvic rhythm; and (3) aberrant control of shoulder movement in an individual with observed scapular dysrhythmia. Angle-angle and coupling angle-movement cycle graphs were consistent with clinical operational definitions of typical and altered lumbopelvic rhythm. Phase-plane graphs illustrated differences in scapular control between individuals having typical scapular motion and an individual with scapular dysrhythmia. Angle-angle, coupling angle-movement cycle, and phase-plane graphs provide information about the amount and timing of segmental motion, which clinicians assess when they observe movements. These approaches have the potential to (1) enhance understanding of typical and aberrant movement patterns; (2) assist with identifying underlying movement impairments that contribute to aberrant movements: and (3) improve clinicians’ ability to visually assess and categorize functional movements.
Background: Evidence suggests patients with non-speci¯c low back pain (NSLBP) have altered lumbar and pelvic movement patterns. These changes could be associated with altered patterns of muscle activation. Objective: The study aimed to determine: (1) di®erences in the relative contributions and velocity of lumbar and pelvic movements between people with and without NSLBP, (2) the di®erences in lumbopelvic muscle activation patterns between people with and without NSLBP, and (3) the association between lumbar and pelvic movements and lumbopelvic muscle activation patterns. Methods: Subjects (8 healthy individuals and 8 patients with NSLBP) performed 2 sets of 3 repetitions of active forward bending, while motion and muscle activity data were collected simultaneously. Data derived were lumbar and pelvic ranges of motion and velocity, and ipsilateral and contralateral lumbopelvic muscle activities (internal oblique/transverse abdominis (IO/TA), lumbar multi¯dus (LM), erector spinae (ES) and gluteus maximus (GM) muscles). Results: Lumbar and pelvic motions showed trends, but exceeded 95% con¯dence minimal detectable difference (MDD 95 ), for greater pelvic motion (p ¼ 0:06), less lumbar motion (p ¼ 0:23) among patients with NSLBP. Signi¯cantly less activity was observed in the GM muscles bilaterally (p < 0:05) in the NSLBP group. A signi¯cant association (r ¼ À0:8, p ¼ 0:02) was found between ipsilateral ES muscle activity and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.