SummaryShort telomeres are thought to trigger senescence, most likely through a single -or a group of few -critically shortened telomeres. Such short telomeres are thought to result from a combination of gradual linear shortening resulting from the end replication problem, reflecting the division history of the cell, superimposed by a more stochastic mechanism, suddenly causing a significant shortening of a single telomere. Previously, studies that have tried to explore the role of critically shortened telomeres have been hampered by methodological problems. With the method presented here, Universal STELA, we have a tool that can directly investigate the relationship between senescence and the load of short telomeres. The method is a variant of the chromosome-specific STELA method but has the advantage that it can demonstrate short telomeres regardless of chromosome. With Universal STELA, we find a strong correlation between the load of short telomeres and cellular senescence. Further we show that the load of short telomeres is higher in senescent cells compared to proliferating cells at the same passage, offering an explanation of premature cell senescence. This new method, Universal STELA, offers some advantages compared to existing methods and can be used to explore many of the unanswered questions in telomere biology including the role that telomeres play in cancer and aging.
Comparison of two methods to detect circulating tumor cells (CTC) CytoTrack and CellSearch through recovery of MCF-7 breast cancer cells, spiked into blood collected from healthy donors. Spiking of a fixed number of EpCAM and pan-cytokeratin positive MCF-7 cells into 7.5 mL donor blood was performed by FACSAria flow sorting. The samples were shipped to either CytoTrack or CellSearch research facilities within 48 h, where evaluation of MCF-7 recovery was performed. CytoTrack and CellSearch analyses were performed simultaneously. Recoveries of MCF-7 single cells, cells in clusters, and clusters were determined. The average numbers of MCF-7 cells/cells in clusters/clusters recovered from blood by the CytoTrack and CellSearch methods were 103 ± 5.9/27 ± 7.9/11 ± 3.5 (95 % CI) and 107 ± 4.4/20 ± 7.1/10 ± 3.5, respectively, with no difference between the two methods (p = 0.37/p = 0.23/p = 0.09). Overall, the recovery of CytoTrack and CellSearch was 68.8 ± 3.9 %/71.1 ± 2.9 %, respectively (p = 0.58). In spite of different methodologies, CytoTrack and CellSearch found similar number of CTCs, when spiking was performed with the EpCAM and pan cytokeratin-positive cell line MCF-7. The results suggest that CytoTrack and CellSearch have similar abilities to identify CTC in vitro.
The presence of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals and the community is a serious problem. Accordingly, a comprehensive plan has been implemented in the County of Vejle, Denmark, to identify colonised and/or infected individuals and to control the spread of MRSA. Since 2005, all patients and healthcare personnel have been screened for MRSA colonisation, involving analysis of 300-400 samples daily. To deal with this number of samples, a PCR-based method customised for high-throughput analysis and a system for fast reporting of MRSA carrier status were developed. Swab samples were incubated overnight in a selective tryptone soya broth and were analysed by PCR the following day. Using this strategy, non-colonised individuals were identified within 24 h, while MRSA-positive samples were analysed further by traditional microbiological methods to determine the resistance pattern. This is a cost-effective approach, as the greatest expense in hospitals involves the isolation of patients of unknown MRSA status. The method was evaluated by testing 2194 clinical samples, with a sensitivity and specificity of 100% and 94%, respectively. The analytical sensitivity was 97%, with 161 of 166 different MRSA strains and isolates generating positive results according to PCR analysis. Using four control strains, the inter-assay variation was revealed to be a maximum of 2.6%, indicating good reproducibility.
Aim: Attempts have been made to use CTC values for interpretation of treatment response and to guide change of chemotherapy by using a static cut-off of 5 CTC to stratify patients in favourable or unfavourable responders. We propose a new approach to interpret treatment effect using significant changes in CTC values (SCV-limits1) as grouping parameter for responders and non-responders to chemotherapy among metastatic breast cancer (mBC) patients. Method: CTC were analysed using the CellSearch System in blood from 47 mBC patients before the start of new chemotherapy and before the third cycle of therapy. The new and old approach to interpret changes in CTC values were compared in relation to progression free survival (PFS). Results: The new approach using significant CTC change (P = .032) and the old approach using static cut-off (P > .001) correlated significantly with PFS using a cohort of 47 patients. Conclusion: We propose a new approach to interpret significant changes between baseline and follow-up CTC values as a tool for assessing treatment effect in mBC. Our approach stratified patients in new risk groups that were stratified significantly with respect to PFS. More patients are needed to balance the size of the risk groups for better comparison to the existing approach based on a 5 CTC cut-off.
The PCR assay can be used to detect change in a group mean of S. aureus and S. epidermidis in a hospital ward, i.e. before and after an intervention to improve hand hygiene. For the individual, the change in bacteria levels needed for significance is compromised by high intra-individual variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.