The objective of this study was to investigate the toxicokinetic characteristics of melamine in broilers due to the limited information available for livestock. Melamine was then administered to broiler chickens at an intravenous (i.v.) or oral (p.o.) dosage of 5.5 mg/kg of body weight, and plasma samples were collected up to 48 h. The concentration of melamine in each plasma sample was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Melamine was measurable up to 24 h after i.v. and p.o. administration. A one-compartment model was developed to describe the toxicokinetics of melamine in broilers. Following i.v. administration, the values for the elimination half-life (t(1/2β)), the volume of distribution (Vd ), and the clearance (CL) were 4.42 ± 1.02 h, 00.52 ± 0.18 L/kg, and 0.08 ± 0.01 L/h/kg, respectively. The absolute oral bioavailability (F) was 95.63 ± 3.54%. The results suggest that most of the administered melamine is favorably absorbed from the alimentary tract and rapidly cleared by the kidneys in broiler chickens.
Background and Aim: Obesity in dogs leads to several health problems, such as premature death, and contributes to other diseases. Recently, body fat percentage has been considered to represent the body condition of dogs, and bioelectrical impedance analysis (BIA) is the most effective method for accurately measuring body fat in dogs. In Thailand, information on the body condition of dogs is limited, and there is no standard body fat level for Thai or mongrel dogs. This study was designed to evaluate and analyze the body fat percentage in dogs through BIA using a handheld instrument. The results of this study can help enhance the quality of life and health of dogs and aid in setting a standard body fat level for Thai or mongrel dogs.
Materials and Methods: The body fat percentage of 340 Thai and mongrel dogs in East Thailand was measured in the standing position, and the body condition score (BCS) (range, 1–5), sex, sterilization status, age, type of diet, and lifestyle were recorded. A linear regression model was developed to compare the variables and the predicted body fat percentage, and multiple linear regressions were used to analyze the factors for body fat increment.
Results: The linear regression model used to estimate the percentage of body fat (y) for each BCS (x) was y = 0.84 + 8.36x (R2 = 0.7219; p < 0.0001); the average body fat percentage was 27.52% for all studied dogs; specifically, 24.83% for the Thai Bangkaew, 26.42% for the Thai Ridgeback, and 27.65% for mongrels. The median body fat percentage was significantly higher in female than in male dogs. We found that as age increases, body fat percentage also increases; this increasing trend begins at the age of 5 years. However, increasing the level of activity and decreasing meal frequency leads to an increase in body fat percentage in neutered male dogs.
Conclusion: The average body fat percentage of dogs in East Thailand is 27.52% and this value is expected to increase when these dogs reach the age of 5 years. BIA is a valid and effective measurement tool for detecting the body fat percentage in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.