Nanoparticle mediated functional delivery of plasmid DNA (pDNA) in vivo typically requires the formulation of pDNA-nanoparticles with a surface layer of stealth/biocompatibility polymer (usually poly(ethylene glycol) [PEG]). This PEG layer ensures the colloidal stability of pDNA-nanoparticles in biological fluids and minimizes nanoparticle interactions with the reticulo-endothelical system. Unfortunately, the presence of the PEG layer appears to contribute to a reduction in efficiency of functional delivery of pDNA once target cells are reached. For this reason, we have focused recent research efforts on "triggerable" nanoparticle systems. These are designed to be stable from the point of administration until a target site of interest is reached, then triggered for the controlled release of therapeutic agent payload(s) at the target site by changes in local endogenous conditions or through the application of some exogenous stimulus. Here, we describe investigations into the potential use of enzymes to trigger pDNA-mediated therapy through a process of enzyme-assisted nanoparticle triggerability. Our approach is to use PEG(2000)-peptidyl lipids with peptidyl moieties sensitive to tumor-localized elastase or matrix metalloproteinase-2 digestion, and from these prepare putative enzyme-triggered PEGylated pDNA-nanoparticles. Our results provide initial proof of concept in vitro. From these data, we propose that this concept should be applicable for functional delivery of therapeutic nucleic acids to tumor cells in vivo, although the mechanism for enzyme-assisted nanoparticle triggerability remains to be fully characterized.
A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N = 3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n = 6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries. Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.
A controlled release system of Plai (Zingiber cassumunar Roxb.) oil based on electrospun poly(lactic) acid (PLA) nanofiber mat was successfully developed. The physicochemical properties of the nanofibers loaded with select amounts of oil (15%, 20%, and 30% wt) were characterized using various techniques, including a morphological study using scanning electron microscopy (SEM), structural determination using Fourier transform infrared spectrometry (FTIR) and x-ray diffraction (XRD), as well as thermal properties study using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The loading content and the entrapment efficiency of Plai oil within the fiber mats were evaluated and were found to be remarkably high, ensuring that PLA was an appropriate material for Plai oil loading. The ability of the nanofiber mats to release (E)-1-(3,4dimethoxyphenyl) butadiene (DMPBD) was also examined and the fiber mats showed controlled release characteristics. As the nanofiber mats have particularly high specific surface area with fully accessible and interconnected pore structures, a liquid medium with active ingredients will not be trapped in blind pores but can be fully released out of the fiber matrix. Furthermore, in vitro skin permeation of the active compound as well as a skin irritation were assessed using reconstructed human epidermis (EpiSkin TM ). It was found that DMPBD could efficiently penetrate through the skin model. Moreover, the nanofiber mats containing Plai oil also showed no skin irritation, indicating them as promising prototypes for medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.