The paper presents an experimental study of heat/mass transfer coefficient in 1:4 rectangular channel with smooth or ribbed walls for Reynolds number in the range of 5000–40,000 and rotation numbers in the range of 0–0.12. Such passages are encountered close to the mid-chord sections of the turbine blade. Normal ribs (e/Dh=0.3125 and P/e=8) are placed on the leading and the trailing sides only. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. For purposes of comparison, selected measurements are also performed in a 1:1 cross section. The local mass-transfer data in the fully developed region is averaged to study the effect of the Reynolds and the rotation numbers. The spanwise mass transfer distributions in the smooth and the ribbed cases are also examined.
The paper presents an experimental study of heat/mass transfer coefficient in 4:1 aspect ratio rectangular channel with smooth or ribbed walls for Reynolds number in the range of 5,000 to 30,000, rotation numbers in the range of 0–0.12 and for two different orientations of the test-section (90-degree and 45-degree relative to the plane of rotation). Such passages are encountered close to the trailing sections of the turbine blade. Inline normal tips (e/Dh = 0.15625 and p/e = 11.2) are used and placed on the leading and the trailing sides. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. It is observed that for the 45-degree orientation of the test-section, all the walls show an increase in the heat transfer with rotation as opposed to the 90-degree orientation where the stabilized wall shows reduction and the destabilized wall shows enhancement. The spanwise mass transfer distributions in the smooth and the ribbed cases are also presented, and show significant variations in the spanwise direction for the smooth channel.
The paper presents an experimental study of heat/mass transfer coefficient in 1:4 rectangular channel with smooth or ribbed walls for Reynolds number in the range of 5000 to 40000 and Rotation numbers in the range of 0–0.12. Such passages are encountered close to the mid-chord sections of the turbine blade. Normal ribs (e/Dh = 0.3125, and P/e = 8) are placed on the leading and the trailing sides only. The experiments are conducted in a rotating two-pass coolant channel facility using the naphthalene sublimation technique. For purposes of comparison, selected measurements are also performed in a 1:1 cross-section. The local mass-transfer data in the fully developed region is averaged to study the effect of the Reynolds and the Rotation numbers. The span-wise mass transfer distributions in the smooth and the ribbed cases are also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.