Over the past two decades, we have witnessed an exponential increase of data production in the world. So-called big data generally come from transactional systems, and even more so from the Internet of Things and social media. They are mainly characterized by volume, velocity, variety and veracity issues. Big data-related issues strongly challenge traditional data management and analysis systems. The concept of data lake was introduced to address them. A data lake is a large, raw data repository that stores and manages all company data bearing any format. However, the data lake concept remains ambiguous or fuzzy for many researchers and practitioners, who often confuse it with the Hadoop technology. Thus, we provide in this paper a comprehensive state of the art of the different approaches to data lake design. We particularly focus on data lake architectures and metadata management, which are key issues in successful data lakes. We also discuss the pros and cons of data lakes and their design alternatives.
2 BIAL-X https://www.bial-x.com/ Abstract. Over the past decade, the data lake concept has emerged as an alternative to data warehouses for storing and analyzing big data. A data lake allows storing data without any predefined schema. Therefore, data querying and analysis depend on a metadata system that must be efficient and comprehensive. However, metadata management in data lakes remains a current issue and the criteria for evaluating its effectiveness are more or less nonexistent. In this paper, we introduce MEDAL, a generic, graph-based model for metadata management in data lakes. We also propose evaluation criteria for data lake metadata systems through a list of expected features. Eventually, we show that our approach is more comprehensive than existing metadata systems.
Data lakes have emerged as an alternative to data warehouses for the storage, exploration and analysis of big data. In a data lake, data are stored in a raw state and bear no explicit schema. Thence, an efficient metadata system is essential to avoid the data lake turning to a so-called data swamp. Existing works about managing data lake metadata mostly focus on structured and semi-structured data, with little research on unstructured data. Thus, we propose in this paper a methodological approach to build and manage a metadata system that is specific to textual documents in data lakes. First, we make an inventory of usual and meaningful metadata to extract. Then, we apply some specific techniques from the text mining and information retrieval domains to extract, store and reuse these metadata within the COREL research project, in order to validate our proposals.
In 2010, the concept of data lake emerged as an alternative to data warehouses for big data management. Data lakes follow a schema-on-read approach to provide rich and flexible analyses. However, although trendy in both the industry and academia, the concept of data lake is still maturing, and there are still few methodological approaches to data lake design. Thus, we introduce a new approach to design a data lake and propose an extensive metadata system to activate richer features than those usually supported in data lake approaches. We implement our approach in the AUDAL data lake, where we jointly exploit both textual documents and tabular data, in contrast with structured and/or semi-structured data typically processed in data lakes from the literature. Furthermore, we also innovate by leveraging metadata to activate both data retrieval and content analysis, including Text-OLAP and SQL querying. Finally, we show the feasibility of our approach using a real-word use case on the one hand, and a benchmark on the other hand.
In 2010, the concept of data lake emerged as an alternative to data warehouses for big data management. Data lakes follow a schema-on-read approach to provide rich and flexible analyses. However, although trendy in both the industry and academia, the concept of data lake is still maturing, and there are still few methodological approaches to data lake design. Thus, we introduce a new approach to design a data lake and propose an extensive metadata system to activate richer features than those usually supported in data lake approaches. We implement our approach in the AUDAL data lake, where we jointly exploit both textual documents and tabular data, in contrast with structured and/or semi-structured data typically processed in data lakes from the literature. Furthermore, we also innovate by leveraging metadata to activate both data retrieval and content analysis, including Text-OLAP and SQL querying. Finally, we show the feasibility of our approach using a real-word use case on the one hand, and a benchmark on the other hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.