Mathematical models have proven valuable in understanding the dynamics of HIV-1 infection in vivo. By comparing these models to data obtained from patients undergoing antiretroviral drug therapy, it has been possible to determine many quantitative features of the interaction between HIV-1, the virus that causes AIDS, and the cells that are infected by the virus. The most dramatic finding has been that even though AIDS is a disease that occurs on a time scale of about 10 years, there are very rapid dynamical processes that occur on time scales of hours to days, as well as slower processes that occur on time scales of weeks to months. We show how dynamical modeling and parameter estimation techniques have uncovered these important features of HIV pathogenesis and impacted the way in which AIDS patients are treated with potent antiretroviral drugs.
We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU
rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41
families (six newly described in this volume) in Dothideomycetes. All
currently accepted orders in the class are represented for the first time in
addition to numerous previously unplaced lineages. Subclass
Pleosporomycetidae is expanded to include the aquatic order
Jahnulales. An ancestral reconstruction of basic nutritional modes
supports numerous transitions from saprobic life histories to plant associated
and lichenised modes and a transition from terrestrial to aquatic habitats are
confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with
other fungi finds a high level of unique protein associated with the class,
supporting its delineation as a separate taxon.
Many competing noises in real environments are modulated or fluctuating in level. Listeners with normal hearing are able to take advantage of temporal gaps in fluctuating maskers. Listeners with sensorineural hearing loss show less benefit from modulated maskers. Cochlear implant users may be more adversely affected by modulated maskers because of their limited spectral resolution and by their reliance on envelope-based signal-processing strategies of implant processors. The current study evaluated cochlear implant users' ability to understand sentences in the presence of modulated speech-shaped noise. Normal-hearing listeners served as a comparison group. Listeners repeated IEEE sentences in quiet, steady noise, and modulated noise maskers. Maskers were presented at varying signal-to-noise ratios (SNRs) at six modulation rates varying from 1 to 32 Hz. Results suggested that normal-hearing listeners obtain significant release from masking from modulated maskers, especially at 8-Hz masker modulation frequency. In contrast, cochlear implant users experience very little release from masking from modulated maskers. The data suggest, in fact, that they may show negative effects of modulated maskers at syllabic modulation rates (2-4 Hz). Similar patterns of results were obtained from implant listeners using three different devices with different speech-processor strategies. The lack of release from masking occurs in implant listeners independent of their device characteristics, and may be attributable to the nature of implant processing strategies and/or the lack of spectral detail in processed stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.