Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the "comb" and the "bamboo blossom", we find a necessary and sufficient condition for the existence and the unicity of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the generating functions of word occurrences.MSC 2010: 60J05, 37E05.
Estimation procedures based on recursive algorithms are interesting and powerful techniques that are able to deal rapidly with (very) large samples of high dimensional data. The collected data may be contaminated by noise so that robust location indicators, such as the geometric median, may be preferred to the mean. In this context, an estimator of the geometric median based on a fast and efficient averaged non linear stochastic gradient algorithm has been developed by Cardot et al. (2013). This work aims at studying more precisely the non asymptotic behavior of this algorithm by giving non asymptotic confidence balls. This new result is based on the derivation of improved L 2 rates of convergence as well as an exponential inequality for the martingale terms of the recursive non linear Robbins-Monro algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.