Objectives Weight loss leads to reduced serum urate (SU) in people with obesity. However, the clinical relevance of such reductions in SU is unknown. This study examined the impact of non-surgical weight loss and bariatric surgery on SU targets in people with morbid obesity and diabetes. Methods The study was a single-centre, prospective study of 60 people with type 2 diabetes and body mass index ≥35 kg/m 2 . Following 6 months of non-surgical weight loss, all participants had laparoscopic sleeve gastrectomy, with a further 1 year of follow-up. Serial SUs were measured throughout the study. Results Participants experienced mean (SD) weight loss of 5.5 (4.1) kg prior to surgery and 34.3 (11.1) kg following surgery. SU did not change following nonsurgical weight loss (0.38 (0.09) mmol/L at baseline and 0.38 (0.10) mmol/L at follow-up), but increased to 0.44 (0.15) mmol/L in the immediate postoperative period and reduced to 0.30 (0.08) mmol/L 1 year after surgery ( p<0.05 for both compared with baseline). Baseline SU, cessation of diuretics, female sex and change in creatinine independently predicted change in SU at the final visit. In participants without gout, SU above saturation levels (≥0.41 mmol/L) were present in 19/48 (40%) at baseline and 1/48 (2%) 1 year after surgery ( p<0.0001). In participants with gout, SU above therapeutic target levels (≥0.36 mmol/L) were present in 10/12 (83%) at baseline and 4/12 (33%) 1 year after surgery ( p=0.031). Conclusions Clinically relevant reductions in SU occur following bariatric surgery in people with diabetes and WHO class II or higher obesity.
The 7th edition of the Textbook ofNeonatal Resuscitation recommends administration of epinephrine via an umbilical venous catheter (UVC) inserted 2–4 cm below the skin, followed by a 0.5-mL to 1-mL flush for severe bradycardia despite effective ventilation and chest compressions (CC). This volume of flush may not be adequate to push epinephrine to the right atrium in the absence of intrinsic cardiac activity during CC. The objective of our study was to evaluate the effect of 1-mL and 2.5-mL flush volumes after UVC epinephrine administration on the incidence and time to achieve return of spontaneous circulation (ROSC) in a near-term ovine model of perinatal asphyxia induced cardiac arrest. After 5 min of asystole, lambs were resuscitated per Neonatal Resuscitation Program (NRP) guidelines. During resuscitation, lambs received epinephrine through a UVC followed by 1-mL or 2.5-mL normal saline flush. Hemodynamics and plasma epinephrine concentrations were monitored. Three out of seven (43%) and 12/15 (80%) lambs achieved ROSC after the first dose of epinephrine with 1-mL and 2.5-mL flush respectively (p = 0.08). Median time to ROSC and cumulative epinephrine dose required were not different. Plasma epinephrine concentrations at 1 min after epinephrine administration were not different. From our pilot study, higher flush volume after first dose of epinephrine may be of benefit during neonatal resuscitation. More translational and clinical trials are needed.
Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal morbidity and mortality worldwide. Approximately 1 million infants born with HIE each year survive with cerebral palsy (CP) and/or serious cognitive disabilities. While infants born with mild and severe HIE frequently result in predictable outcomes, infants born with moderate HIE exhibit variable outcomes that are highly unpredictable. Here, we describe an umbilical cord occlusion (UCO) model of moderate HIE with a 6-day follow-up. Near term lambs (n=27) are resuscitated after the induction of 5 minutes of asystole. Following recovery, lambs are assessed to define neurodevelopmental outcomes. At the end of this period, lambs are euthanized, and brains harvested for histological analysis. Compared with prior models that typically follow lambs for 3 days, the observation of neurobehavioral outcomes for 6 days enables identification of animals that recover significant neurological function. Approximately 35 % of lambs exhibited severe motor deficits throughout the entirety of the 6-day course and, in the most severely affected lambs, developed spastic diparesis similar to that observed in infants who survive severe neonatal HIE (severe, UCOs). Importantly, and similar to outcomes in human neonates, while initially developing significant acidosis and encephalopathy, the remainder of the lambs in this model recovered normal motor activity and exhibited normal neurodevelopmental outcomes by 6 days of life (improved, UCOi). The UCOs group exhibited gliosis and inflammation in both white and gray matter, oligodendrocyte loss, and neuronal loss and cellular death in the hippocampus and cingulate cortex. While the UCOi group exhibited more cellular death and gliosis in the parasagittal cortex and demonstrated more preserved white matter markers, along with reduced markers of inflammation and lower cellular death and neuronal loss in Ca3 of the hippocampus compared with UCOs lambs. Our large animal model of moderate HIE with prolonged follow-up will help further define pathophysiologic drivers of brain injury while enabling identification of predictive biomarkers that correlate with disease outcomes and ultimately help support development of therapeutic approaches to this challenging clinical scenario.
BACKGROUND:The neonatal resuscitation program (NRP) recommends interrupted chest compressions (CCs) with ventilation in the severely bradycardic neonate. The conventional 3:1 compression-to-ventilation (C:V) resuscitation provides 90 CCs/min, significantly lower than the intrinsic newborn heart rate (120-160 beats/min). Continuous CC with asynchronous ventilation (CCCaV) may improve the success of return of spontaneous circulation (ROSC). METHODS: Twenty-two near-term fetal lambs were randomized to interrupted 3:1 C:V (90 CCs + 30 breaths/min) or CCCaV (120 CCs + 30 breaths/min). Asphyxiation was induced by cord occlusion. After 5 min of asystole, resuscitation began following NRP guidelines. The first dose of epinephrine was given at 6 min. Invasive arterial blood pressure and left carotid blood flow were continuously measured. Serial arterial blood gases were collected. RESULTS: Baseline characteristics between groups were similar. Rate of and time to ROSC was similar between groups. CCCaV was associated with a higher PaO 2 (partial oxygen tension) (22 ± 5.3 vs. 15 ± 3.5 mmHg, p < 0.01), greater left carotid blood flow (7.5 ± 3.1 vs. 4.3 ± 2.6 mL/kg/min, p < 0.01) and oxygen delivery (0.40 ± 0.15 vs. 0.13 ± 0.07 mL O 2 /kg/min, p < 0.01) compared to 3:1 C:V. CONCLUSIONS: In a perinatal asphyxiated cardiac arrest lamb model, CCCaV showed greater carotid blood flow and cerebral oxygen delivery compared to 3:1 C:V resuscitation.
Rapid whole-exome sequencing (rWES) is used in critically ill newborn infants to inform about diagnosis, clinical management, and prognosis. Here we report a male newborn infant with hydrops, pancytopenia, and acute liver failure who was listed for liver transplantation. Given the acuity of the presentation, the procedure-related morbidity and mortality, and lack of diagnosis, we used rWES in the proband and both parents with a turnaround time of 10 business days. rWES returned one maternally inherited, likely pathogenic and one paternally inherited, likely pathogenic variant in NPC1, suggestive of a diagnosis of Niemann–Pick disease type C (NPC). Interestingly, a diagnosis of NPC was entertained prior to rWES, but deemed unlikely in light of absent cholesterol storage on liver biopsy and near-normal oxysterol levels in dried blood. The diagnosis of NPC was confirmed on filipin stain in fibroblasts demonstrating defective cholesterol trafficking. NPC is a slowly progressive neurodegenerative disorder that may also affect the liver with overall poor prognosis. It was decided to take the infant off the transplant list and transfer to palliative care, where he died after 4 wk. This case highlights the utility of rWES in an acute clinical setting for several domains of precision medicine including (1) diagnosis, (2) prognosis and outcome, (3) management and therapy, and (4) utilization of resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.