Mussel beds along the wave-exposed coast of the eastern North Pacific Ocean serve as an important habitat, harboring a high diversity of species. A comparison of California mussel bed community diversity in 2002 to historical data (1960s to 1970s) revealed large declines (mean loss 58.9%), including some declines >141 species (approximately 80% loss). Concurrent work revealed inconsistent changes in mussel populations (biomass and bed thickness) along the California coast, suggesting that diversity declines may be related to large-scale processes rather than local habitat destruction. Potential factors causing declines in mussel community diversity are discussed, with regional climate change associated with the Pacific Decadal Oscillation and climate change induced alterations of ecological interactions and biological processes suggested as likely causes. Although extensive literature has predicted the potential effects of climate change on global diversity, this study is one of the few examples of declines attributed to climate change.
Closely cropped algal turfs support key ecosystem functions on healthy coraldominated reefs, yet how this important reef component is affected by sedimentation, a key stressor on reefs worldwide, is relatively unknown. We used a 2-factor caging experiment to evaluate the effects of varying sediment depth and presence of herbivorous fish on algal turf height on a fringing reef in Mo'orea, French Polynesia. Without herbivory, 2 mm of sediment reduced turf growth by ~50% compared to sediment removal treatments; in contrast, growth with 4 mm of sediment was low or negligible regardless of herbivory treatment. Negative effects of sediment were linked to the development of black basal layers of sediment, indicating accumulation of hydrogen sulfide. Black sediment occurred in 60 to 70% of all 4 mm plots and in 43% of caged 2 mm plots but was not found in open 2 mm plots, implying that grazing ameliorated development of black sediment under 2 mm loads. Sediment levels of 2 mm did not deter herbivory, evidenced by the significant decrease in turf height in open compared to caged plots. Under 4 mm of sediment, black sediment inhibited both growth and herbivory where it occurred. Without black sediment, however, fish grazing balanced algal growth, resulting in negligible algal height changes across 4 mm plots but with differing underlying mechanisms. Field surveys on other sedimented reefs with healthy herbivore communities confirmed an increase in the presence of black sediment at depths over 3 mm. Thus, deeper sediment depths inhibit turf growth, yet under moderate levels of sedimentation, intact herbivorous fish communities may maintain closely cropped, healthy turf communities by preventing the negative effects of black sediment.
We evaluated the effects of nutrient addition on interactions between the benthic microalgal community and a dominant herbivorous gastropod, Cerithidea californica (California horn snail), on tidal flats in Mugu Lagoon, southern California, USA. We crossed snail and nutrient (N and P) addition treatments in enclosures on two tidal flats varying from 71 to 92% sand content in a temporally replicated experiment (summer 2000, fall 2000, spring 2001). Diatom biomass increased slightly (approximately 30%) in response to nutrient treatments but was not affected by snails. Blooms of cyanobacteria (up to 200%) and purple sulfur bacteria (up to 400%) occurred in response to nutrient enrichment, particularly in the sandier site, but only cyanobacterial biomass decreased in response to snail grazing. Snail mortality was 2-5 times higher in response to nutrient addition, especially in the sandier site, corresponding to a relative increase in cyanobacterial biomass. Nutrient-related snail mortality occurred only in the spring and summer, when the snails were most actively feeding on the microalgal community. Inactive snails in the fall showed no response to nutrient-induced cyanobacterial growths. This study demonstrated strongly negative upward cascading effects of nutrient enrichment through the food chain. The strength of this upward cascade was closely linked to sediment type and microalgal community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.