Topical exposure to nanoscale materials is likely from a variety of sources including sunscreens and cosmetics. Because the in vivo disposition of nanoscale materials is not well understood, we have evaluated the distribution of quantum dots (QDs) following intradermal injection into female SKH-1 hairless mice as a model system for determining tissue localization following intradermal infiltration. The QD (CdSe core, CdS capped, poly[ethylene glycol] coated, 37 nm diameter, 621 nm fluorescence emission) were injected intradermally (ID) on the right dorsal flank. Within minutes following intradermal injection, the highly UV fluorescent QD could be observed moving from the injection sites apparently through the lymphatic duct system to regional lymph nodes. Residual fluorescent QD remained at the site of injection until necropsy at 24 h. Quantification of cadmium and selenium levels after 0, 4, 8, 12, or 24 h in multiple tissues, using inductively coupled plasma mass spectrometry (ICP-MS), showed a time-dependent loss of cadmium from the injection site, and accumulation in the liver, regional draining lymph nodes, kidney, spleen, and hepatic lymph node. Fluorescence microscopy corroborated the ICP-MS results regarding the tissue distribution of QD. The results indicated that (1) ID injected nanoscale QD remained as a deposit in skin and penetrated the surrounding viable subcutis, (2) QD were distributed to draining lymph nodes through the sc lymphatics and to the liver and other organs, and (3) sentinel organs are effective locations for monitoring transdermal penetration of nanoscale materials into animals.
Many cosmetics, sunscreens, and other consumer products are reported to contain nanoscale materials. The possible transdermal absorption of nanoscale materials and the long-term consequences of the absorption have not been determined. We used polyethylene glycol coated cadmium selenide (CdSe) core quantum dots (QD; 37 nm diameter) to evaluate the penetration of nanoscale material into intact, tape stripped, acetone treated, or dermabraded mouse skin. QD were suspended in an oil-in-water emulsion (approximately 9 microM) and the emulsion was applied at 2 mg/cm(2) to mouse dorsal skin pretreated as follows: intact; tape stripped to remove the stratum corneum; acetone pretreated; dermabraded to remove stratum corneum and epidermis. QD penetration into the skin was monitored in sentinel organs (liver and regional draining lymph nodes) using inductively coupled plasma mass spectrometry analysis of cadmium (from the CdSe QD). No consistent cadmium elevation was detected in the sentinel organs of mice with intact, acetone pretreated, or tape-stripped skin at 24- and 48-h post-QD application; however, in dermabraded mice, cadmium elevations were detected in the lymph nodes and liver. QD accumulation (as cadmium) in the liver was approximately 2.0% of the applied dose. The passing of QD through the dermabraded skin was confirmed using confocal fluorescence microscopy. These results suggest that transdermal absorption of nanoscale materials depends on skin barrier quality, and that the lack of an epidermis provided access to QD penetration. Future dermal risk assessments of nanoscale materials should consider key barrier aspects of skin and its overall physiologic integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.