HIF prolyl hydroxylases (PHD1-3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparalpha pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2alpha and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress.
Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth.
In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1, drives the synthesis of transforming growth factor- (TGF) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGF further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its ␣v3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.Supplemental material is available at http://www.genesdev.org.Received November 30, 2007; revised version accepted April 28, 2008. Duchenne muscular dystrophy (DMD) results from mutations in the gene coding for the protein dystrophin, which localizes at the inner face of the sarcolemma (Campbell 1995). Besides progressive muscle degeneration and inflammation, fibrotic transition of muscle tissue is critical in DMD as it progressively deteriorates locomotor capacity, posture maintenance, and the vital function of cardiac and respiratory muscles. Indeed, DMD individuals have a high degree of fibrosis increasing with age, which is reproduced in the diaphragm muscle of mdx mice (the mouse model of DMD) (Stedman et al. 1991). Importantly, the underlying mechanisms of fibrosis development within dystrophic muscle remain largely unknown.Fibrinogen is a soluble acute phase protein, which is released into the blood in response to stress. Apart from its key role in controlling blood loss following vascular injury, fibrinogen also extravasates at sites of inflammation or increased vascular permeability where it is immobilized and/or converted to fibrin (Rybarczyk et al. 2003) (from hereon we refer to both by the term "fibrin/ ogen"). We showed previously that mice with defective fibrinolysis exhibited impaired muscle regeneration after experimental injury (Suelves et al. 2002). In this study, we investigated the role of fibrin/ogen deposition in the development of fibrosis in dystrophic muscle. Results and DiscussionWe first analyzed fibrin/ogen deposition in muscles of DMD patients and its correlation with disease course. Compared with muscles of healthy individuals or of fibromyalgia patients, DMD muscles showed significant fibrin/ogen accumulation (Fig. 1A). Similarly, in mdx mice muscles, fibrin/ogen deposits were readily detectable after disease onset, while absent before disease onset (Fig. 1B,C). Thus, fibrin/ogen deposition is associated with muscle dystrophinopathy.Collagen deposition (fibrosis) was prominent in DMD muscles and particularly found in the same areas occupied by fibrin/ogen (Fig. 1D). To investigate the relationship between the e...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.