We examined water quality indicators (pH, temperature, turbidity, total phosphorus, and fecal coliform density) and bacterial antibiotic resistance (prevalence, conjugative transfer, and genetic linkage of resistance elements) at locations impacted by confined animal feeding operations (CAFOs) and compared them to nearby reference sites. Sites located upstream and downstream of two wastewater treatment facilities were also compared. Sites near CAFO farms had poor water quality (elevated total phosphorus and turbidity), while water quality remained relatively good downstream of wastewater treatment plants. High proportions of antibiotic-resistant bacteria were observed at all study sites, and frequent conjugative transfer of resistance was observed in laboratory assays. Out of a total of 830 environmental bacterial isolates, 77.1% were resistant to only ampicillin, while 21.2% were resistant to combinations of antibiotics including ampicillin (A), kanamycin (K), chlorotetracycline (C), oxytetracycline (O), and streptomycin (S). Multi-drug-resistant bacteria were significantly more common at sites impacted by CAFO farms. In conjugation assays, 83.3% of the environmental isolates transferred one or more antibiotic resistance genes to a laboratory strain of Salmonella typhimurium. A subset of multi-drugresistant (A, C, and O) isolates was screened for specific tetracycline resistance genes and class I and II integrons. None of the screened isolates (n=22) were positive for integrons, while 13 isolates contained resistance genes for tet (B) and tet (C). Our results indicate that CAFO farms not only impair traditional measures of water quality but may also increase the prevalence of multi-drug-resistant bacteria in natural waters.
This biochemistry laboratory course
was designed to provide significant learning experiences to expose
students to different ways of succeeding as scientists in academia
and foster development and improvement of their potential and competency
as the next generation of investigators. To meet these goals, the
laboratory course employs three different practices that support an
‘Integrated Course Design’ approach: (1) incorporating
basic laboratory techniques with faculty research projects, (2) promoting
team-based learning, and (3) developing, de novo, a mini-NIH grant
proposal that serves as a capstone project. On course evaluations,
students give the biochemistry laboratory course the highest ratings
for course and teaching effectiveness, and these ratings are a higher
percentage overall compared to similar chemistry laboratory courses
offered in the program. Students also state that the practices of
the laboratory course went beyond their prior experiences in traditional
lab courses. They have reported that they were excited to be involved
in current research, were intellectually challenged to think in new
ways, were impressed by the work accomplished with their teams, were
encouraged by the growth in understanding and ability to formulate
new questions, and better realized the impact of chemistry on numerous
aspects of human health and everyday life. Thus, the biochemistry
laboratory course experience has positively affected student satisfaction
in the chemistry program, as well as student self-efficacy.
In Chlamydomonas, the usual rapid degradation of tubulin mRNAs induced by flagellar amputation is prevented by inhibition of protein synthesis with cycloheximide. Evidence is presented that the ability of cycloheximide to stabilize alpha-tubulin mRNA depends on the time of addition. Addition of cycloheximide to cells before induction strongly stabilizes the induced mRNAs, while addition after their synthesis stabilizes them only transiently. Moreover, cycloheximide inhibition does not stabilize the same alpha-tubulin mRNA species in uninduced cells. These results suggest that cycloheximide is not acting to stabilize the induced alpha-tubulin mRNAs simply by preventing ribosome translocation. The stabilized state of tubulin mRNA was found to correlate with its occurrence on smaller polysomes but larger EDTA-released mRNP particles than the unstable state. A second effect of cycloheximide on the metabolism of induced tubulin mRNAs is to accelerate complete poly(A) removal. This effect of cycloheximide inhibition, unlike stabilization, occurs whenever cycloheximide is added to cells, and appears unrelated to stabilization. The effect is shown to be mRNA-specific; poly(A)-shortening on the rbcS2 mRNA is not altered in the presence of cycloheximide, nor do completely deadenylated molecules accumulate. Experiments in which cells were released from cycloheximide inhibition suggest that deadenylated alpha-tubulin mRNAs may be less stable than their polyadenylated counterparts during active translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.