We describe methods for the rapid generation of minilibraries of substituted alkoxy benzenes (consisting of 4-5 compounds), for screening as insect olfaction or gustation inhibitors. Synthetic or commercially available monoalkoxy benzene compounds were mixed and reacted with various alkyl halides to afford a first set of minilibraries. A second and third set were generated from allyloxy minilibraries via the Claisen rearrangement and subsequent alkylation of the ortho-allyl phenols. We have chosen to prepare a collection of small libraries (as opposed to one large library) to test the response insects exhibit toward blends of compounds. We demonstrate how our minilibraries can be screened, both against insect antennae and against expressed pheromone-binding proteins from the gypsy moth, Lymantria dispar.
The antifeedant, oviposition deterrent, and toxic effects of dialkoxybenzene minilibraries and of disubstituted cyclopentene minilibraries (i.e., consisting of four to five compounds) along with their pure constituent compounds were assessed against third instar larvae and adults of the cabbage looper, Trichoplusia ni, in laboratory bioassays in a search for new insect control agents. These compounds mimic naturally occurring bioactive odorants and tastants and are relatively easily prepared from commodity chemicals. Most of these libraries strongly deterred larval feeding, with some exhibiting strong toxic and oviposition deterrent effects as well. Our results suggest some structure-function relationships within these libraries. Replacement of a methyl group with larger alkyl substituents increased the feeding deterrent effects in most cases. The presence of a free hydroxyl group, irrespective of the carbon framework or alkyl substituent, served to reduce feeding deterrent effects in all series of compounds. Further, exceeding a certain group size also generally had a detrimental effect. This information will be useful in designing new insect control agents for agriculture. Some of these libraries and compounds may have potential for development as commercial insecticides.
Background Vibrio parahaemolyticus (Vp) is a naturally occurring bacterium found in marine environments worldwide. It can cause gastrointestinal illness in humans, primarily through raw oyster consumption. Water temperatures, and potentially other environmental factors, play an important role in the growth and proliferation of Vp in the environment. Quantifying the relationships between environmental variables and indicators or incidence of Vp illness is valuable for public health surveillance to inform and enable suitable preventative measures. This study aimed to assess the relationship between environmental parameters and Vp in British Columbia (BC), Canada.MethodsThe study used Vp counts in oyster meat from 2002-2015 and laboratory confirmed Vp illnesses from 2011-2015 for the province of BC. The data were matched to environmental parameters from publicly available sources, including remote sensing measurements of nighttime sea surface temperature (SST) obtained from satellite readings at a spatial resolution of 1 km. Using three separate models, this paper assessed the relationship between (1) daily SST and Vp counts in oyster meat, (2) weekly mean Vp counts in oysters and weekly Vp illnesses, and (3) weekly mean SST and weekly Vp illnesses. The effects of salinity and chlorophyll a were also evaluated. Linear regression was used to quantify the relationship between SST and Vp, and piecewise regression was used to identify SST thresholds of concern.ResultsA total of 2327 oyster samples and 293 laboratory confirmed illnesses were included. In model 1, both SST and salinity were significant predictors of log(Vp) counts in oyster meat. In model 2, the mean log(Vp) count in oyster meat was a significant predictor of Vp illnesses. In model 3, weekly mean SST was a significant predictor of weekly Vp illnesses. The piecewise regression models identified a SST threshold of approximately 14oC for both model 1 and 3, indicating increased risk of Vp in oyster meat and Vp illnesses at higher temperatures.ConclusionMonitoring of SST, particularly through readily accessible remote sensing data, could serve as a warning signal for Vp and help inform the introduction and cessation of preventative or control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.