Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Although the mutant protein is widely expressed, the earliest and most striking neuropathological changes are observed in the striatum. Here we show dramatic mutation length increases (gains of up to 1000 CAG repeats) in human striatal cells early in the disease course, most likely before the onset of pathological cell loss. Studies of knock-in HD mouse models indicate that the size of the initial CAG repeat mutation may influence both onset and tissue-specific patterns of age-dependent, expansion-biased mutation length variability. Given that CAG repeat length strongly correlates with clinical severity, we suggest that somatic increases of mutation length may play a major role in the progressive nature and cell-selective aspects of both adult-onset and juvenile-onset HD pathogenesis and we discuss the implications of this interpretation of the data presented.
To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and fulllength transgenic models of HD took longer to appear, 15-and 22-month CHL2 that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.
Huntington's disease (HD) is characterized by the selective loss of striatal projection neurons. In early stages of HD, neurodegeneration preferentially occurs in the lateral globus pallidus (LGP) and substantia nigra (SN), two regions in which the axons of striatal neurons terminate. Here we report that in mice expressing full-length mutant huntingtin and modeling early stages of HD, neuropil aggregates form preferentially in the LGP and SN. The progressive formation of these neuropil aggregates follows intranuclear accumulation of mutant huntingtin and becomes prominent from 11 to 27 months after birth. Neuropil aggregates, but no intranuclear inclusions, were observed in the LGP and SN, suggesting that huntingtin aggregates are formed in the axons of striatal projection neurons. In the LGP and SN, we observed degenerated axons in which huntingtin aggregates were associated with dark, swollen organelles that resemble degenerated mitochondria. Neuritic aggregates also form in cultured striatal neurons expressing mutant huntingtin, block protein transport in neurites, and cause neuritic degeneration before nuclear DNA fragmentation occurs. These findings suggest that the early neuropathology of HD originates from axonal dysfunction and degeneration associated with huntingtin aggregates.
Myotonic dystrophy (DM) is the most common form of adult muscular dystrophy, with a prevalence of 2-14 per 100,000 individuals. The disease is characterized by progressive muscle weakness and sustained muscle contraction, often with a wide range of accompanying symptoms. The age at onset and severity of the disease show extreme variation, both within and between families. Despite its clinical variability, this dominant condition segregates as a single locus at chromosome 19q13.3 in every population studied. It is flanked by the tightly linked genetic markers ERCC1 proximally and D19S51 distally; these define the DM critical region. We report the isolation of an expressed sequence from this region which detects a DNA fragment that is larger in affected individuals than in normal siblings or unaffected controls. The size of this fragment varies between affected siblings, and increases in size through generations in parallel with increasing severity of the disease. We postulate that this unstable DNA sequence is the molecular feature that underlies DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.