Antibiotic treatment has been shown to cause gut microbiota dysbiosis. However, lacking critical features defining gut microbiota dysbiosis makes it challenging to prevent. By co-occurrence network analysis, we found that despite short antibiotic courses eliminating certain microbial taxa, the Akkermansia genus played the role of a high-centrality hub to maintain microbiota homeostasis. When the antibiotic courses continued, the elimination of Akkermansia induced a significant microbiota remodeling of the gut microbiota networks. Based on this finding, we found that under long-term antibiotic stress, the gut microbiota was rearranged into a stable network with a significantly lower Akkermansiaceae/ Lachnospiraceae (A/L) ratio and no microbial hub. By functional prediction analysis, we confirmed that the gut microbiota with a low A/L ratio also had enhanced mobile elements and biofilm-formation functions that may be associated with antibiotic resistance. This study identified A/L ratio as an indicator of antibiotic-induced dysbiosis. This work reveals that besides the abundance of specific probiotics, the hierarchical structure also critically impacts the microbiome function. Co-occurrence analysis may help better monitor the microbiome dynamics than only comparing the differentially abundant bacteria between samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.