Sequence variation within enhancers plays a major role in both evolution and disease, yet its functional impact on transcription factor (TF) occupancy and enhancer activity remains poorly understood. Here, we assayed the binding of five essential TFs over multiple stages of embryogenesis in two distant Drosophila species (with 1.4 substitutions per neutral site), identifying thousands of orthologous enhancers with conserved or diverged combinatorial occupancy. We used these binding signatures to dissect two properties of developmental enhancers: (1) potential TF cooperativity, using signatures of co-associations and co-divergence in TF occupancy. This revealed conserved combinatorial binding despite sequence divergence, suggesting protein-protein interactions sustain conserved collective occupancy. (2) Enhancer in-vivo activity, revealing orthologous enhancers with conserved activity despite divergence in TF occupancy. Taken together, we identify enhancers with diverged motifs yet conserved occupancy and others with diverged occupancy yet conserved activity, emphasising the need to functionally measure the effect of divergence on enhancer activity.DOI: http://dx.doi.org/10.7554/eLife.28440.001
The introduction of large language models (LLMs) that allow iterative “chat” in late 2022 is a paradigm shift that enables generation of text often indistinguishable from that written by humans. LLM-based chatbots have immense potential to improve academic work efficiency, but the ethical implications of their fair use and inherent bias must be considered. In this editorial, we discuss this technology from the academic’s perspective with regard to its limitations and utility for academic writing, education, and programming. We end with our stance with regard to using LLMs and chatbots in academia, which is summarized as (1) we must find ways to effectively use them, (2) their use does not constitute plagiarism (although they may produce plagiarized text), (3) we must quantify their bias, (4) users must be cautious of their poor accuracy, and (5) the future is bright for their application to research and as an academic tool.
Transcription factor (TF) binding is determined by sequence as well as chromatin accessibility. Although the role of accessibility in shaping TF-binding landscapes is well recorded, its role in evolutionary divergence of TF binding, which in turn can alter cis-regulatory activities, is not well understood. In this work, we studied the evolution of genome-wide binding landscapes of five major TFs in the core network of mesoderm specification, between Drosophila melanogaster and Drosophila virilis, and examined its relationship to accessibility and sequence-level changes. We generated chromatin accessibility data from three important stages of embryogenesis in both Drosophila melanogaster and Drosophila virilis and recorded conservation and divergence patterns. We then used multivariable models to correlate accessibility and sequence changes to TF-binding divergence. We found that accessibility changes can in some cases, for example, for the master regulator Twist and for earlier developmental stages, more accurately predict binding change than is possible using TF-binding motif changes between orthologous enhancers. Accessibility changes also explain a significant portion of the codivergence of TF pairs. We noted that accessibility and motif changes offer complementary views of the evolution of TF binding and developed a combined model that captures the evolutionary data much more accurately than either view alone. Finally, we trained machine learning models to predict enhancer activity from TF binding and used these functional models to argue that motif and accessibility-based predictors of TF-binding change can substitute for experimentally measured binding change, for the purpose of predicting evolutionary changes in enhancer activity.
Quantifying the functional effects of complex disease risk variants can provide insights into mechanisms underlying disease biology. Genome-wide association studies have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants lie in the non-coding genome, where they likely function through interaction with gene regulatory elements. In this study we first estimated the heritability explained by known common low penetrance risk alleles for EOC. The narrow sense heritability (h 2 g ) of EOC overall and high-grade serous ovarian cancer (HGSOCs) were estimated to be 5%-6%. Partitioned SNP heritability across broad functional categories indicated a significant contribution of regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from Roadmap Epigenomics and ENCODE, and from H3K27Ac ChIP-seq data generated in 26 ovarian cancer and precursor-related cell and tissue types. We identified significant enrichment of risk single-nucleotide polymorphisms (SNPs) in active regulatory elements marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in active regulatory elements influence predisposition to ovarian cancer, we used motifbreakR to predict the disruption of transcription factor binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that are predicted to significantly break transcription factor (TF) motifs. The most frequently broken motif was REST (p value ¼ 0.0028), which has been reported as both a tumor suppressor and an oncogene. Overall, these systematic functional annotations with epigenomic data improve interpretation of EOC risk variants and shed light on likely cells of origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.