Resulting from a mature accomplishment of the unmanned aircraft system (UAS), it is feasible to be adopted into logistic delivery services. The supporting technologies should be identified and examined, accompanying with the risk assessment. This paper surveys the risk assessment studies for UAVs. The expected level of safety (ELS) analysis is a key factor to safety concerns. By introducing the UTM infrastructure, the UAS implementation can be monitored. From the NASA technical capability level (TCL), UAV in beyond visual line of sight (BVLOS) flights would need certain verifications. Two UAS logistic delivery case studies are tested to assert the UAS services. To examine the ELS to ground risk and air risk, the case studies result in acceptable data to support the UAS logistic delivery with adequate path planning in the remote and suburban areas in Taiwan.
The hierarchical unmanned aerial systems (UAS) traffic management (UTM) is proposed for UAS operation in Taiwan. The proposed UTM is constructed using the similar concept of ATM from the transport category aviation system. Based on the airspace being divided by 400 feet of altitude, the RUTM (regional UTM) is managed by the local government and the NUTM (national UTM) by the Civil Aeronautical Administration (CAA). Under construction of the UTM system infrastructure, this trial tests examine the effectiveness of UAV surveillance under 400 feet using automatic dependent surveillance-broadcast (ADS-B)-like on-board units (OBU). The ground transceiver station (GTS) is designed with the adoptable systems. In these implementation tests, five long-range wide area network (LoRa) gateways and one automatic packet reporting system (APRS) I-Gate are deployed to cover the Tainan Metropolitan area. The data rates are set in different systems from 8 to 12 s to prevent from data conflict or congestion. The signal coverage, time delay, data distribution, and data variance in communication are recorded and analyzed for RUTM operation. Data streaming and Internet manipulation are verified with cloud system stability and availability. Simple operational procedures are defined with priority for detect and avoid (DAA) for unmanned aerial vehicles (UAVs). Mobile communication and Zello broadcasts are introduced and applied to establish controller-to-pilot communication (CPC) for DAA. The UAV flight tests are generally beyond visual line-of-sight (BVLOS) near suburban areas with flight distances to 8 km. On the GTS deployment, six test locations examine communication coverage and effectiveness using ADS-B like OBUs. In system verification, the proposed ADS-B like OBU works well in the UTM infrastructure. The system feasibility is proven with support of receiving data analysis and transceiver efficiency. The trial test supports RUTM in Taiwan for UAV operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.