A synthetic method of isoquinolines from aryl ketone O-acyloxime derivatives and internal alkynes has been developed using [Cp*RhCl(2)](2)-NaOAc as the potential catalyst system. The present transformation is carried out by a redox-neutral sequence of C-H vinylation via ortho-rhodation and C-N bond formation of the putative vinyl rhodium intermediate on the oxime nitrogen, where the N-O bond of oxime derivatives could work as an internal oxidant to maintain the catalytic cycle.
A synthetic method for azaheterocycles from aryl ketone O-acetyl oximes and internal alkynes has been developed by using the Cu(OAc)(2)-[Cp*RhCl(2)](2) bimetallic catalytic system. The reactions proceeded with both of anti- and syn-isomers of oximes with a wide scope of substituents. The Cu-Rh bimetallic system could be applied for the synthesis of isoquinolines as well as β-carboline, furo[2.3-c]pyridine, pyrrolo[2,3-c]pyridine, and thieno[2,3-c]pyridine derivatives.
Sodium hydride (NaH) is widely used as a Brønsted base in chemical synthesis and reacts with various Brønsted acids, whereas it rarely behaves as a reducing reagent through delivery of the hydride to polar π electrophiles. This study presents a series of reduction reactions of nitriles, amides, and imines as enabled by NaH in the presence of LiI or NaI. This remarkably simple protocol endows NaH with unprecedented and unique hydride‐donor chemical reactivity.
A method for synthesis of 4-bromoisoquinolones has been developed starting from 2-alkynylbenzaldehydes and primary amines mediated by CuBr under an O(2) atmosphere, where CuBr plays multiple roles to facilitate the present reactions.
Sodium hydride (NaH) has been commonly used as a Brønsted base in chemical syntheses, while it has rarely been employed to add hydride (H(-) ) to unsaturated electrophiles. We previously developed a procedure to activate NaH through the addition of a soluble iodide source and found that the new NaH-NaI composite can effect even stereoselective nucleophilic hydride reductions of nitriles, imines, and carbonyl compounds. In this work, we report that mixing NaH with NaI or LiI in tetrahydrofuran (THF) as a solvent provides a new inorganic composite, which consists of NaI interspersed with activated NaH, as revealed by powder X-ray diffraction, and both solid-state NMR and X-ray photoelectron spectroscopies. DFT calculations imply that this remarkably simple inorganic composite, which is comprised of NaH and NaI, gains nucleophilic hydridic character similar to covalent hydrides, resulting in unprecedented and unique hydride donor chemical reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.