SUMMARY
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, whereas prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.
SUMMARY
Therapeutics such as lapatinib that target ERBB2 often provide initial clinical benefit but resistance frequently develops. Adaptive responses leading to lapatinib resistance involve reprogramming of the kinome through reactivation of ERBB2/ERBB3 signaling and transcriptional upregulation and activation of multiple tyrosine kinases. The heterogeneity of induced kinases prevents their targeting by a single kinase inhibitor, underscoring the challenge of predicting effective kinase inhibitor combination therapies. We hypothesized that to make the tumor response to single kinase inhibitors durable, the adaptive kinome response itself must be inhibited. Genetic and chemical inhibition of BET bromodomain chromatin readers suppresses transcription of many lapatinib-induced kinases involved in resistance including ERBB3, IGF1R, DDR1, MET, and FGFRs, preventing downstream SRC/FAK signaling and AKT reactivation. Combining inhibitors of kinases and chromatin readers prevents kinome adaptation by blocking transcription, generating a durable response to lapatinib and overcoming the dilemma of heterogeneity in the adaptive response.
Posttraumatic stress disorder (PTSD), a chronic disorder resulting from severe trauma, has been linked to immunologic dysregulation. Gene expression profiling has emerged as a promising tool for understanding the pathophysiology of PTSD. However, to date, all but one gene expression study was based on whole blood or unsorted peripheral blood mononuclear cell (PBMC), a complex tissue consisting of several populations of cells. The objective of this study was to utilize RNA sequencing to simultaneously profile the gene expression of four immune cell subpopulations (CD4T, CD8T, B cells, and monocytes) in 39 World Trade Center responders (20 with and 19 without PTSD) to determine which immune subsets play a role in the transcriptomic changes found in whole blood. Transcriptome-wide analyses identified cell-specific and shared differentially expressed genes across the four cell types. FKBP5 and PI4KAP1 genes were consistently upregulated across all cell types. Notably, REST and SEPT4, genes linked to neurodegeneration, were among the top differentially expressed genes in monocytes. Pathway analyses identified differentially expressed gene sets involved in mast cell activation and regulation in CD4T, interferon-beta production in CD8T, and neutrophil-related gene sets in monocytes. These findings suggest that gene expression indicative of immune dysregulation is common across several immune cell populations in PTSD. Furthermore, given notable differences between cell subpopulations in gene expression associated with PTSD, the results also indicate that it may be valuable to analyze different cell populations separately. Monocytes may constitute a key cell type to target in research on gene expression profile of PTSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.