The aim of this study was to investigate the antiadiposity effect of bitter melon seed oil (BMSO), which is rich in the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid. In Expt. 1, C57BL/6J mice were fed a butter-based, high-fat diet [HB; 29% butter + 1% soybean oil (SBO)] for 10 wk to induce obesity. They then continued to receive that diet or were switched to an SBO-based, high-fat diet alone (HS; 30% SBO) or containing bitter melon seed oil (BMSO) (HBM; 15% SBO + 15% BMSO) for 5 wk. The body fat percentage was significantly lower in mice fed the HBM diet (21%), but not the HS diet, compared with mice fed the HB diet. In Expt. 2, mice were fed an SBO-based, high-fat diet containing 0 (HS), 5 (LBM), 10 (MBM), or 15% (HBM) BMSO for 10 wk. In the LBM, MBM, and HBM groups, the body fat percentage was significantly lower by 32, 35, and 65%, respectively, compared with the HS control. The reduction in the HBM group was significantly greater than that in the LBM or MBM group. BMSO administration increased phosphorylation of acetyl-CoA carboxylase, cAMP-activated protein kinase (PKA), and signal transducer and activator of transcription 3 in the white adipose tissue (WAT), suggesting that PKA and leptin signaling might be involved in the BMSO-mediated reduction in lipogenesis and increase in thermogenesis and lipolysis. However, compared with the HS control, the HBM group had a significantly higher TNFα concentration in the WAT accompanied by TUNEL-positive nuclei. We conclude that BMSO is effective in attenuating body fat accumulation through mechanisms associated with PKA activation and programmed cell death in the WAT, but safety concerns need to be carefully addressed.
ObjectiveWe have previously shown that bitter melon seed oil (BMSO), which is rich in cis-9, trans-11, trans-13 conjugated linolenic acid, is more potent than soybean oil in attenuating body fat deposition in high-fat diet-induced obese C57BL/6J mice. The aim of this study was to obtain a comprehensive insight into how white adipose tissue (WAT) is affected by BMSO administration and to explore the underlying mechanisms of the anti-adiposity effect of BMSO.Methods and ResultsA proteomic approach was used to identify proteins differentially expressed in the WAT of mice fed diets with or without BMSO for 11 wks. The WAT was also analyzed histologically for morphological changes. Two-dimensional gel electrophoresis (pH 4–7) revealed 32 spots showing a statistically significant difference (P<0.05) in intensity in BMSO-treated mice and 30 of these were shown to code for 23 proteins (15 increased and 8 decreased expression; >2-fold change). Combined with histological evidence of macrophage infiltration and brown adipocyte recruitment, the proteomic and immunoblotting data showed that the WAT in mice subjected to long-term high dose BMSO administration was characterized by reduced caveolae formation, increased ROS insult, tissue remodeling/repair, mitochondria uncoupling, and stabilization of the actin cytoskeleton, this last change being putatively related to an increased inflammatory response.ConclusionThe anti-adiposity effect of BMSO is associated with WAT delipidation, inflammation, and browning. Some novel proteins participating in these processes were identified. In addition, the BMSO-mediated WAT browning may account for the increased inflammation without causing adverse metabolic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.