Erasing text from images is a common image-editing task in film industry and shared media. Existing text-erasing models either tend to produce artifacts or fail to remove all the text in real-world images. In this paper, we follow a two-stage text erasing framework that first masks the text by segmentation, and then inpaints the masked region to create a text-erased image. Our proposed text mask generator is designed to accurately cover text, which combined with inpainting, can produce reliable text-erased results. In the inpainting model, we propose a Multiscale Gradient Reconstruction Loss to generate sharp realistic-looking images. Our model achieves stateof-the-art results on both synthetic and real world data in both quantitative and qualitative measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.