Torsins are essential, disease-relevant ATPases, but their function is unknown. Monitoring of nuclear envelope morphology after deletion of multiple Torsins or their cofactors reveals a robust inner nuclear membrane–blebbing phenotype in HeLa cells. Nucleoporins and ubiquitin are defining molecular components of these omega-shaped blebs.
Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes.DOI: http://dx.doi.org/10.7554/eLife.16011.001
TorsinA is a membrane-tethered AAA؉ ATPase implicated in nuclear envelope dynamics as well as the nuclear egress of herpes simplex virus 1 (HSV-1). The activity of TorsinA and the related ATPase TorsinB strictly depends on LAP1 and LULL1, type II transmembrane proteins that are integral parts of the Torsin/cofactor AAA ring, forming a composite, membrane-spanning assembly. Here, we use CRISPR/Cas9-mediated genome engineering to create single-and double knockout (KO) cell lines of TorA and TorB as well as their activators, LAP1 and LULL1, to investigate the effect on HSV-1 production. Consistent with LULL1 being the more potent Torsin activator, a LULL1 KO reduces HSV-1 growth by one order of magnitude, while the deletion of other components of the Torsin system in combination causes subtle defects. Notably, LULL1 deficiency leads to a 10-fold decrease in the number of viral genomes per host cell without affecting viral protein production, allowing us to tentatively assign LULL1 to an unexpected role that precedes HSV-1 nuclear egress. IMPORTANCEIn this study, we conduct the first comprehensive genetic and phenotypic analysis of the Torsin/cofactor system in the context of HSV-1 infection, establishing LULL1 as the most important component of the Torsin system with respect to viral production. Herpesviruses are enveloped, double-stranded DNA viruses that enter the host cell by fusing with the plasma membrane. Following the microtubule-dependent transport of the nucleocapsid to the nuclear pore complex, the linear herpesvirus genome is ejected into the nucleus of the host cell, where it is transcribed and replicated. Viral genome replication (1), transcription of viral genes, and assembly and packaging of new viral particles take place in designated replication compartments located at the periphery of the nucleus (2).After the viral capsids are assembled and packaged, they must exit the nucleus to undergo further maturation in the cytoplasm. Herpesviruses undergo nuclear egress via a nuclear membrane budding mechanism in which the viral capsid first buds through the inner nuclear membrane (INM) to form an enveloped intermediate within the perinuclear space, which then fuses with the outer nuclear membrane (ONM) to release the deenveloped capsid into the cytosol (3, 4).Several viral proteins are required for efficient nuclear egress. Viral kinase U S 3 and the virally manipulated host cell protein kinase C phosphorylate and locally disassemble the nuclear lamina, which represents a physical barrier between the viral capsid and the INM (5-7). Additionally, the soluble phosphoprotein U L 31 and the type II inner nuclear membrane phosphoprotein U L 34, which together constitute the viral nuclear egress complex, accumulate at the INM to facilitate capsid envelopment (8-10). Both U L 31 and U L 34 are essential for herpesvirus growth (11), and their coexpression without viral infection is sufficient to cause vesicle formation (12,13). While the viral factors involved in nuclear egress are well characterized, muc...
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
BackgroundEarly diagnosis and treatment of nontuberculous mycobacterial lung diseases (NTM-LD) and pulmonary tuberculosis (PTB) are important clinical issues. The present study aimed to compare and identify the chest CT characteristics that help to distinguish NTM lung disease from PTB in patients with acid-fast bacilli (AFB) smear-positive sputum.MethodsFrom January 2009 to April 2012, we received 467 AFB smear-positive sputum specimens. A total of 95 CT scans obtained from the 159 patients were analyzed, 75 scans were from patients with PTB and 20 scans from NTM-LD. The typical chest CT findings of mycobacterial diseases were analyzed.ResultsIn patients with PTB, the prevalence of pleural effusion (38.7% vs. 15.0%; P =0.047), nodules < 10 mm in size (76.0% vs. 25.0%; P < 0.001), tree-in-bud pattern (81.3% vs. 55.0%; P =0.021), and cavities (31.1% vs. 5.0%; P =0.018) were significantly higher than patients with NTM. Of the 20 patients with NTM lung diseases, bronchiectasis and cystic changes were significantly higher than patients with PTB (20.0% vs. 4.0%; P = 0.034). In multivariate analysis, CT scan findings of nodules was independently associated with patients with diagnoses of PTB (odds ratio [OR], 0.07; 95% confidence interval [CI], 0.02-0.30). Presence of bronchiectasis and cystic changes in CT scans was strongly associated with patients with NTM-LD (OR, 33.04; 95% CI, 3.01-362.55).ConclusionsThe CT distinction between NTM-LD and PTB may help radiologists and physicians to know the most likely diagnoses in AFB-smear positive patients and avoid unnecessary adverse effects and the related costs of anti-TB drugs in endemic areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.