Data provides a foundation for machine learning, which has accelerated data-driven materials design. The scientific literature contains a large amount of high-quality, reliable data, and automatically extracting data from the literature continues to be a challenge. We propose a natural language processing pipeline to capture both chemical composition and property data that allows analysis and prediction of superalloys. Within 3 h, 2531 records with both composition and property are extracted from 14,425 articles, covering γ′ solvus temperature, density, solidus, and liquidus temperatures. A data-driven model for γ′ solvus temperature is built to predict unexplored Co-based superalloys with high γ′ solvus temperatures within a relative error of 0.81%. We test the predictions via synthesis and characterization of three alloys. A web-based toolkit as an online open-source platform is provided and expected to serve as the basis for a general method to search for targeted materials using data extracted from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.